/* $Id: e100lpslavenet.c,v 1.5 2002/04/22 11:47:24 johana Exp $ * * e100lpslavenet.c: A network driver for the ETRAX 100LX slave controller. * * Copyright (c) 1998-2001 Axis Communications AB. * * The outline of this driver comes from skeleton.c. * * $Log: e100lpslavenet.c,v $ * Revision 1.5 2002/04/22 11:47:24 johana * Fix according to 2.4.19-pre7. time_after/time_before and * missing end of comment. * The patch has a typo for ethernet.c in e100_clear_network_leds(), * that is fixed here. * * Revision 1.4 2001/06/21 16:55:26 olof * Minimized par port setup time to gain bandwidth * * Revision 1.3 2001/06/21 15:49:02 olof * Removed setting of default MAC address * * Revision 1.2 2001/06/11 15:39:52 olof * Clean up and sync with ethernet.c rev 1.16. Increased reset time of slave. * * Revision 1.1 2001/06/06 08:56:26 olof * Added support for slave Etrax defined by CONFIG_ETRAX_ETHERNET_LPSLAVE * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* DMA and register descriptions */ #include /* LED_* I/O functions */ #include #include #include #include #include "e100lpslave.h" /* #define ETHDEBUG */ #define D(x) /* * The name of the card. Is used for messages and in the requests for * io regions, irqs and dma channels */ static const char* cardname = "Etrax 100LX ethernet slave controller"; /* A default ethernet address. Highlevel SW will set the real one later */ static struct sockaddr default_mac = { 0, { 0x00, 0x40, 0x8C, 0xCD, 0x00, 0x00 } }; /* Information that need to be kept for each board. */ struct net_local { struct net_device_stats stats; /* Tx control lock. This protects the transmit buffer ring * state along with the "tx full" state of the driver. This * means all netif_queue flow control actions are protected * by this lock as well. */ spinlock_t lock; }; /* Dma descriptors etc. */ #define RX_BUF_SIZE 32768 #define ETHER_HEAD_LEN 14 #define PAR0_ECP_IRQ_NBR 4 #define RX_DESC_BUF_SIZE 256 #define NBR_OF_RX_DESC (RX_BUF_SIZE / \ RX_DESC_BUF_SIZE) /* Size of slave etrax boot image */ #define ETRAX_PAR_BOOT_LENGTH 784 static etrax_dma_descr *myNextRxDesc; /* Points to the next descriptor to to be processed */ static etrax_dma_descr *myLastRxDesc; /* The last processed descriptor */ static etrax_dma_descr *myPrevRxDesc; /* The descriptor right before myNextRxDesc */ static unsigned char RxBuf[RX_BUF_SIZE]; static etrax_dma_descr RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned(4))); static etrax_dma_descr TxDescList[3] __attribute__ ((aligned(4))); /* host command, data, bogus ECP command */ static struct sk_buff *tx_skb; /* Index to functions, as function prototypes. */ static int etrax_ethernet_lpslave_init(struct net_device *dev); static int e100_open(struct net_device *dev); static int e100_set_mac_address(struct net_device *dev, void *addr); static int e100_send_packet(struct sk_buff *skb, struct net_device *dev); static void e100rx_interrupt(int irq, void *dev_id, struct pt_regs *regs); static void e100tx_interrupt(int irq, void *dev_id, struct pt_regs *regs); static void ecp_interrupt(int irq, void *dev_id, struct pt_regs *regs); static void e100_rx(struct net_device *dev); static int e100_close(struct net_device *dev); static struct net_device_stats *e100_get_stats(struct net_device *dev); static void set_multicast_list(struct net_device *dev); static void e100_hardware_send_packet(unsigned long hostcmd, char *buf, int length); static void update_rx_stats(struct net_device_stats *); static void update_tx_stats(struct net_device_stats *); static void e100_reset_tranceiver(void); static void boot_slave(unsigned char *code); #ifdef ETHDEBUG static void dump_parport_status(void); #endif #define tx_done(dev) (*R_DMA_CH0_CMD == 0) static unsigned long host_command; extern unsigned char e100lpslaveprog; /* * This driver uses PAR0 to recevice data from slave ETRAX and PAR1 to boot * and send data to slave ETRAX. * Used ETRAX100 DMAchannels with corresponding IRQ: * PAR0 RX : DMA3 - IRQ 19 * PAR1 TX : DMA4 - IRQ 20 * IRQ 4 is used to detect ECP commands from slave ETRAX * * NOTE! PAR0 and PAR1 shares DMA and IRQ numbers with SER2 and SER3 */ /* * Check for a network adaptor of this type, and return '0' if one exists. * If dev->base_addr == 0, probe all likely locations. * If dev->base_addr == 1, always return failure. * If dev->base_addr == 2, allocate space for the device and return success * (detachable devices only). */ static int __init etrax_ethernet_lpslave_init(struct net_device *dev) { int i; int anOffset = 0; printk("Etrax/100 lpslave ethernet driver v0.3, (c) 1999 Axis Communications AB\n"); dev->base_addr = 2; printk("%s initialized\n", dev->name); /* make Linux aware of the new hardware */ if (!dev) { printk(KERN_WARNING "%s: dev == NULL. Should this happen?\n", cardname); dev = init_etherdev(dev, sizeof(struct net_local)); if (!dev) panic("init_etherdev failed\n"); } /* setup generic handlers and stuff in the dev struct */ ether_setup(dev); /* make room for the local structure containing stats etc */ dev->priv = kmalloc(sizeof(struct net_local), GFP_KERNEL); if (dev->priv == NULL) return -ENOMEM; memset(dev->priv, 0, sizeof(struct net_local)); /* now setup our etrax specific stuff */ dev->irq = DMA3_RX_IRQ_NBR; /* we really use DMATX as well... */ dev->dma = PAR0_RX_DMA_NBR; /* fill in our handlers so the network layer can talk to us in the future */ dev->open = e100_open; dev->hard_start_xmit = e100_send_packet; dev->stop = e100_close; dev->get_stats = e100_get_stats; dev->set_multicast_list = set_multicast_list; dev->set_mac_address = e100_set_mac_address; /* Initialise the list of Etrax DMA-descriptors */ /* Initialise receive descriptors */ for(i = 0; i < (NBR_OF_RX_DESC - 1); i++) { RxDescList[i].ctrl = 0; RxDescList[i].sw_len = RX_DESC_BUF_SIZE; RxDescList[i].next = virt_to_phys(&RxDescList[i + 1]); RxDescList[i].buf = virt_to_phys(RxBuf + anOffset); RxDescList[i].status = 0; RxDescList[i].hw_len = 0; anOffset += RX_DESC_BUF_SIZE; } RxDescList[i].ctrl = d_eol; RxDescList[i].sw_len = RX_DESC_BUF_SIZE; RxDescList[i].next = virt_to_phys(&RxDescList[0]); RxDescList[i].buf = virt_to_phys(RxBuf + anOffset); RxDescList[i].status = 0; RxDescList[i].hw_len = 0; /* Initialise initial pointers */ myNextRxDesc = &RxDescList[0]; myLastRxDesc = &RxDescList[NBR_OF_RX_DESC - 1]; myPrevRxDesc = &RxDescList[NBR_OF_RX_DESC - 1]; /* setup some TX descriptor data */ TxDescList[0].sw_len = 4; TxDescList[0].ctrl = 0; TxDescList[0].buf = virt_to_phys(&host_command); TxDescList[0].next = virt_to_phys(&TxDescList[1]); return 0; } /* set MAC address of the interface. called from the core after a * SIOCSIFADDR ioctl, and from the bootup above. */ static int e100_set_mac_address(struct net_device *dev, void *p) { struct sockaddr *addr = p; int i; /* remember it */ memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); /* Write it to the hardware. * Note the way the address is wrapped: * *R_NETWORK_SA_0 = a0_0 | (a0_1 << 8) | (a0_2 << 16) | (a0_3 << 24); * *R_NETWORK_SA_1 = a0_4 | (a0_5 << 8); */ tx_skb = 0; e100_hardware_send_packet(HOST_CMD_SETMAC, dev->dev_addr, 6); /* show it in the log as well */ printk("%s: changed MAC to ", dev->name); for (i = 0; i < 5; i++) printk("%02X:", dev->dev_addr[i]); printk("%02X\n", dev->dev_addr[i]); return 0; } /* * Open/initialize the board. This is called (in the current kernel) * sometime after booting when the 'ifconfig' program is run. * * This routine should set everything up anew at each open, even * registers that "should" only need to be set once at boot, so that * there is non-reboot way to recover if something goes wrong. */ static int e100_open(struct net_device *dev) { unsigned long flags; /* configure the PAR0 (RX) and PAR1 (TX) ports * * perror is nAckReverse, which must be 1 at the TX side, * and 0 at the RX side * * select is XFlag, which must be 1 at both sides */ #ifdef ETHDEBUG printk("Setting up PAR ports\n"); #endif *R_PAR0_CONFIG = /* We do not have an external buffer, don't care */ IO_STATE(R_PAR0_CONFIG, ioe, noninv) | /* Not connected, don't care */ IO_STATE(R_PAR0_CONFIG, iseli, noninv) | /* iautofd is not inverted, noninv */ IO_STATE(R_PAR0_CONFIG, iautofd, noninv) | /* Not used in reverse direction, don't care */ IO_STATE(R_PAR0_CONFIG, istrb, noninv) | /* Not connected, don't care */ IO_STATE(R_PAR0_CONFIG, iinit, noninv) | /* perror is GND and reverse wants 0, noninv */ IO_STATE(R_PAR0_CONFIG, iperr, noninv) | /* ack is not inverted, noninv */ IO_STATE(R_PAR0_CONFIG, iack, noninv) | /* busy is not inverted, noninv */ IO_STATE(R_PAR0_CONFIG, ibusy, noninv) | /* fault is not inverted, noninv */ IO_STATE(R_PAR0_CONFIG, ifault, noninv) | /* select is Vcc and we want 1, noninv */ IO_STATE(R_PAR0_CONFIG, isel, noninv) | /* We will run dma, enable */ IO_STATE(R_PAR0_CONFIG, dma, enable) | /* No run length encoding, disable */ IO_STATE(R_PAR0_CONFIG, rle_in, disable) | /* No run length encoding, disable */ IO_STATE(R_PAR0_CONFIG, rle_out, disable) | /* Enable parallel port */ IO_STATE(R_PAR0_CONFIG, enable, on) | /* Force mode regardless of pin status */ IO_STATE(R_PAR0_CONFIG, force, on) | /* We want ECP forward mode since PAR0 is RX */ IO_STATE(R_PAR0_CONFIG, mode, ecp_rev); *R_PAR1_CONFIG = /* We do not have an external buffer, don't care */ IO_STATE(R_PAR1_CONFIG, ioe, noninv) | /* Not connected, don't care */ IO_STATE(R_PAR1_CONFIG, iseli, noninv) | /* HostAck must indicate data cycle, noninv */ IO_STATE(R_PAR1_CONFIG, iautofd, noninv) | /* HostClk has no external inverter, noninv */ IO_STATE(R_PAR1_CONFIG, istrb, noninv) | /* Not connected, don't care */ IO_STATE(R_PAR1_CONFIG, iinit, noninv) | /* nAckReverse must be 1 in forward mode but is grounded, inv */ IO_STATE(R_PAR1_CONFIG, iperr, inv) | /* PeriphClk must be 1 in forward mode, noninv */ IO_STATE(R_PAR1_CONFIG, iack, noninv) | /* PeriphAck has no external inverter, noninv */ IO_STATE(R_PAR1_CONFIG, ibusy, noninv) | /* nPerihpRequest has no external inverter, noniv */ IO_STATE(R_PAR1_CONFIG, ifault, noninv) | /* Select is VCC and we want 1, noninv */ IO_STATE(R_PAR1_CONFIG, isel, noninv) | /* No EPP mode, disable */ IO_STATE(R_PAR1_CONFIG, ext_mode, disable) | /* We will run dma, enable */ IO_STATE(R_PAR1_CONFIG, dma, enable) | /* No run length encoding, disable */ IO_STATE(R_PAR1_CONFIG, rle_in, disable) | /* No run length encoding, disable */ IO_STATE(R_PAR1_CONFIG, rle_out, disable) | /* Enable parallel port */ IO_STATE(R_PAR1_CONFIG, enable, on) | /* Force mode regardless of pin status */ IO_STATE(R_PAR1_CONFIG, force, on) | /* We want ECP forward mode since PAR1 is TX */ IO_STATE(R_PAR1_CONFIG, mode, ecp_fwd); /* Setup time of value * 160 + 20 ns == 20 ns below */ *R_PAR1_DELAY = IO_FIELD(R_PAR1_DELAY, setup, 0); *R_PAR1_CTRL = 0; while ((((*R_PAR1_STATUS)&0xE000) >> 13) != 5); /* Wait for ECP_FWD mode */ #ifdef ETHDEBUG dump_parport_status(); #endif /* make sure ECP irq is acked when we enable it below */ (void)*R_PAR0_STATUS_DATA; (void)*R_PAR1_STATUS_DATA; /* Reset and wait for the DMA channels */ RESET_DMA(4); /* PAR1_TX_DMA_NBR */ RESET_DMA(3); /* PAR0_RX_DMA_NBR */ WAIT_DMA(4); WAIT_DMA(3); /* boot the slave Etrax, by sending code on PAR1. * do this before we start up the IRQ handlers and stuff, * beacuse we simply poll for completion in boot_slave. */ boot_slave(&e100lpslaveprog); /* allocate the irq corresponding to the receiving DMA */ if (request_irq(DMA3_RX_IRQ_NBR, e100rx_interrupt, 0, cardname, (void *)dev)) { printk("Failed to allocate DMA3_RX_IRQ_NBR\n"); goto grace_exit; } /* allocate the irq corresponding to the transmitting DMA */ if (request_irq(DMA4_TX_IRQ_NBR, e100tx_interrupt, 0, cardname, (void *)dev)) { printk("Failed to allocate DMA4_TX_IRQ_NBR\n"); goto grace_exit; } /* allocate the irq used for detecting ECP commands on the RX port (PAR0) */ if (request_irq(PAR0_ECP_IRQ_NBR, ecp_interrupt, 0, cardname, (void *)dev)) { printk("Failed to allocate PAR0_ECP_IRQ_NBR\n"); grace_exit: free_irq(PAR0_ECP_IRQ_NBR, (void *)dev); free_irq(DMA4_TX_IRQ_NBR, (void *)dev); free_irq(DMA3_RX_IRQ_NBR, (void *)dev); return -EAGAIN; } #if 0 /* We are not allocating DMA since DMA4 is reserved for 'cascading' * and will always fail with the current dma.c */ /* * Always allocate the DMA channels after the IRQ, * and clean up on failure. */ if(request_dma(PAR0_RX_DMA_NBR, cardname)) { printk("Failed to allocate PAR0_RX_DMA_NBR\n"); goto grace_exit; } if(request_dma(PAR1_TX_DMA_NBR, cardname)) { printk("Failed to allocate PAR1_TX_DMA_NBR\n"); grace_exit: /* this will cause some 'trying to free free irq' but what the heck... */ free_dma(PAR1_TX_DMA_NBR); free_dma(PAR0_RX_DMA_NBR); free_irq(PAR0_ECP_IRQ_NBR, (void *)dev); free_irq(DMA4_TX_IRQ_NBR, (void *)dev); free_irq(DMA3_RX_IRQ_NBR, (void *)dev); return -EAGAIN; } #endif #ifdef ETHDEBUG printk("Par port IRQ and DMA allocated\n"); #endif save_flags(flags); cli(); /* enable the irq's for PAR0/1 DMA */ *R_IRQ_MASK2_SET = IO_STATE(R_IRQ_MASK2_SET, dma3_eop, set) | IO_STATE(R_IRQ_MASK2_SET, dma4_descr, set); *R_IRQ_MASK0_SET = IO_STATE(R_IRQ_MASK0_SET, par0_ecp_cmd, set); tx_skb = 0; /* make sure the irqs are cleared */ *R_DMA_CH3_CLR_INTR = IO_STATE(R_DMA_CH3_CLR_INTR, clr_eop, do); *R_DMA_CH4_CLR_INTR = IO_STATE(R_DMA_CH4_CLR_INTR, clr_descr, do); /* Write the MAC address to the slave HW */ udelay(5000); e100_hardware_send_packet(HOST_CMD_SETMAC, dev->dev_addr, 6); /* make sure the rec and transmit error counters are cleared */ (void)*R_REC_COUNTERS; /* dummy read */ (void)*R_TR_COUNTERS; /* dummy read */ /* start the receiving DMA channel so we can receive packets from now on */ *R_DMA_CH3_FIRST = virt_to_phys(myNextRxDesc); *R_DMA_CH3_CMD = IO_STATE(R_DMA_CH3_CMD, cmd, start); restore_flags(flags); /* We are now ready to accept transmit requeusts from * the queueing layer of the networking. */ #ifdef ETHDEBUG printk("Starting slave network transmit queue\n"); #endif netif_start_queue(dev); return 0; } static void e100_reset_tranceiver(void) { /* To do: Reboot and setup slave Etrax */ } /* Called by upper layers if they decide it took too long to complete * sending a packet - we need to reset and stuff. */ static void e100_tx_timeout(struct net_device *dev) { struct net_local *np = (struct net_local *)dev->priv; printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name, tx_done(dev) ? "IRQ problem" : "network cable problem"); /* remember we got an error */ np->stats.tx_errors++; /* reset the TX DMA in case it has hung on something */ RESET_DMA(4); WAIT_DMA(4); /* Reset the tranceiver. */ e100_reset_tranceiver(); /* and get rid of the packet that never got an interrupt */ dev_kfree_skb(tx_skb); tx_skb = 0; /* tell the upper layers we're ok again */ netif_wake_queue(dev); } /* This will only be invoked if the driver is _not_ in XOFF state. * What this means is that we need not check it, and that this * invariant will hold if we make sure that the netif_*_queue() * calls are done at the proper times. */ static int e100_send_packet(struct sk_buff *skb, struct net_device *dev) { struct net_local *np = (struct net_local *)dev->priv; int length = ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN; unsigned char *buf = skb->data; #ifdef ETHDEBUG unsigned char *temp_data_ptr = buf; int i; printk("Sending a packet of length %d:\n", length); /* dump the first bytes in the packet */ for(i = 0; i < 8; i++) { printk("%d: %.2x %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", i * 8, temp_data_ptr[0],temp_data_ptr[1],temp_data_ptr[2], temp_data_ptr[3],temp_data_ptr[4],temp_data_ptr[5], temp_data_ptr[6],temp_data_ptr[7]); temp_data_ptr += 8; } #endif spin_lock_irq(&np->lock); /* protect from tx_interrupt */ tx_skb = skb; /* remember it so we can free it in the tx irq handler later */ dev->trans_start = jiffies; e100_hardware_send_packet(HOST_CMD_SENDPACK, buf, length); /* this simple TX driver has only one send-descriptor so we're full * directly. If this had a send-ring instead, we would only do this if * the ring got full. */ netif_stop_queue(dev); spin_unlock_irq(&np->lock); return 0; } /* * The typical workload of the driver: * Handle the network interface interrupts. */ static void e100rx_interrupt(int irq, void *dev_id, struct pt_regs * regs) { struct net_device *dev = (struct net_device *)dev_id; unsigned long irqbits = *R_IRQ_MASK2_RD; if(irqbits & IO_STATE(R_IRQ_MASK2_RD, dma3_eop, active)) { /* acknowledge the eop interrupt */ *R_DMA_CH3_CLR_INTR = IO_STATE(R_DMA_CH3_CLR_INTR, clr_eop, do); /* check if one or more complete packets were indeed received */ while(*R_DMA_CH3_FIRST != virt_to_phys(myNextRxDesc)) { /* Take out the buffer and give it to the OS, then * allocate a new buffer to put a packet in. */ e100_rx(dev); ((struct net_local *)dev->priv)->stats.rx_packets++; /* restart/continue on the channel, for safety */ *R_DMA_CH3_CMD = IO_STATE(R_DMA_CH3_CMD, cmd, restart); /* clear dma channel 3 eop/descr irq bits */ *R_DMA_CH3_CLR_INTR = IO_STATE(R_DMA_CH3_CLR_INTR, clr_eop, do) | IO_STATE(R_DMA_CH3_CLR_INTR, clr_descr, do); /* now, we might have gotten another packet so we have to loop back and check if so */ } } } /* the transmit dma channel interrupt * * this is supposed to free the skbuff which was pending during transmission, * and inform the kernel that we can send one more buffer */ static void e100tx_interrupt(int irq, void *dev_id, struct pt_regs * regs) { struct net_device *dev = (struct net_device *)dev_id; unsigned long irqbits = *R_IRQ_MASK2_RD; struct net_local *np = (struct net_local *)dev->priv; #ifdef ETHDEBUG printk("We got tx interrupt\n"); #endif /* check for a dma4_eop interrupt */ if(irqbits & IO_STATE(R_IRQ_MASK2_RD, dma4_descr, active)) { /* This protects us from concurrent execution of * our dev->hard_start_xmit function above. */ spin_lock(&np->lock); /* acknowledge the eop interrupt */ *R_DMA_CH4_CLR_INTR = IO_STATE(R_DMA_CH4_CLR_INTR, clr_descr, do); /* skip *R_DMA_CH4_FIRST == 0 test since we use d_wait... */ if(tx_skb) { np->stats.tx_bytes += tx_skb->len; np->stats.tx_packets++; /* dma is ready with the transmission of the data in tx_skb, so now we can release the skb memory */ dev_kfree_skb_irq(tx_skb); tx_skb = 0; netif_wake_queue(dev); } else { printk(KERN_WARNING "%s: tx weird interrupt\n", cardname); } spin_unlock(&np->lock); } } static void ecp_interrupt(int irq, void *dev_id, struct pt_regs * regs) { struct net_device *dev = (struct net_device *)dev_id; struct net_local *lp = (struct net_local *)dev->priv; unsigned long temp, irqbits = *R_IRQ_MASK0_RD; /* check for ecp irq */ if(irqbits & IO_MASK(R_IRQ_MASK0_RD, par0_ecp_cmd)) { /* acknowledge by reading the bit */ temp = *R_PAR0_STATUS_DATA; /* force an EOP on the incoming channel, so we'll get an rx interrupt */ *R_SET_EOP = IO_STATE(R_SET_EOP, ch3_eop, set); } } /* We have a good packet(s), get it/them out of the buffers. */ static void e100_rx(struct net_device *dev) { struct sk_buff *skb; int length=0; int i; struct net_local *np = (struct net_local *)dev->priv; struct etrax_dma_descr *mySaveRxDesc = myNextRxDesc; unsigned char *skb_data_ptr; /* If the packet is broken down in many small packages then merge * count how much space we will need to alloc with skb_alloc() for * it to fit. */ while (!(myNextRxDesc->status & d_eop)) { length += myNextRxDesc->sw_len; /* use sw_len for the first descs */ myNextRxDesc->status = 0; myNextRxDesc = phys_to_virt(myNextRxDesc->next); } length += myNextRxDesc->hw_len; /* use hw_len for the last descr */ #ifdef ETHDEBUG printk("Got a packet of length %d:\n", length); /* dump the first bytes in the packet */ skb_data_ptr = (unsigned char *)phys_to_virt(mySaveRxDesc->buf); for(i = 0; i < 8; i++) { printk("%d: %.2x %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", i * 8, skb_data_ptr[0],skb_data_ptr[1],skb_data_ptr[2],skb_data_ptr[3], skb_data_ptr[4],skb_data_ptr[5],skb_data_ptr[6],skb_data_ptr[7]); skb_data_ptr += 8; } #endif skb = dev_alloc_skb(length - ETHER_HEAD_LEN); if (!skb) { np->stats.rx_errors++; printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name); return; } skb_put(skb, length - ETHER_HEAD_LEN); /* allocate room for the packet body */ skb_data_ptr = skb_push(skb, ETHER_HEAD_LEN); /* allocate room for the header */ #ifdef ETHDEBUG printk("head = 0x%x, data = 0x%x, tail = 0x%x, end = 0x%x\n", skb->head, skb->data, skb->tail, skb->end); printk("copying packet to 0x%x.\n", skb_data_ptr); #endif /* this loop can be made using max two memcpy's if optimized */ while(mySaveRxDesc != myNextRxDesc) { memcpy(skb_data_ptr, phys_to_virt(mySaveRxDesc->buf), mySaveRxDesc->sw_len); skb_data_ptr += mySaveRxDesc->sw_len; mySaveRxDesc = phys_to_virt(mySaveRxDesc->next); } memcpy(skb_data_ptr, phys_to_virt(mySaveRxDesc->buf), mySaveRxDesc->hw_len); skb->dev = dev; skb->protocol = eth_type_trans(skb, dev); /* Send the packet to the upper layers */ netif_rx(skb); /* Prepare for next packet */ myNextRxDesc->status = 0; myPrevRxDesc = myNextRxDesc; myNextRxDesc = phys_to_virt(myNextRxDesc->next); myPrevRxDesc->ctrl |= d_eol; myLastRxDesc->ctrl &= ~d_eol; myLastRxDesc = myPrevRxDesc; return; } /* The inverse routine to net_open(). */ static int e100_close(struct net_device *dev) { struct net_local *np = (struct net_local *)dev->priv; printk("Closing %s.\n", dev->name); netif_stop_queue(dev); *R_IRQ_MASK0_CLR = IO_STATE(R_IRQ_MASK0_CLR, par0_ecp_cmd, clr); *R_IRQ_MASK2_CLR = IO_STATE(R_IRQ_MASK2_CLR, dma3_eop, clr) | IO_STATE(R_IRQ_MASK2_CLR, dma4_descr, clr); /* Stop the receiver and the transmitter */ RESET_DMA(3); RESET_DMA(4); /* Flush the Tx and disable Rx here. */ free_irq(DMA3_RX_IRQ_NBR, (void *)dev); free_irq(DMA4_TX_IRQ_NBR, (void *)dev); free_irq(PAR0_ECP_IRQ_NBR, (void *)dev); free_dma(PAR1_TX_DMA_NBR); free_dma(PAR0_RX_DMA_NBR); /* Update the statistics here. */ update_rx_stats(&np->stats); update_tx_stats(&np->stats); return 0; } static void update_rx_stats(struct net_device_stats *es) { unsigned long r = *R_REC_COUNTERS; /* update stats relevant to reception errors */ es->rx_fifo_errors += r >> 24; /* fifo overrun */ es->rx_crc_errors += r & 0xff; /* crc error */ es->rx_frame_errors += (r >> 8) & 0xff; /* alignment error */ es->rx_length_errors += (r >> 16) & 0xff; /* oversized frames */ } static void update_tx_stats(struct net_device_stats *es) { unsigned long r = *R_TR_COUNTERS; /* update stats relevant to transmission errors */ es->collisions += (r & 0xff) + ((r >> 8) & 0xff); /* single_col + multiple_col */ es->tx_errors += (r >> 24) & 0xff; /* deferred transmit frames */ } /* * Get the current statistics. * This may be called with the card open or closed. */ static struct net_device_stats * e100_get_stats(struct net_device *dev) { struct net_local *lp = (struct net_local *)dev->priv; update_rx_stats(&lp->stats); update_tx_stats(&lp->stats); return &lp->stats; } /* * Set or clear the multicast filter for this adaptor. * num_addrs == -1 Promiscuous mode, receive all packets * num_addrs == 0 Normal mode, clear multicast list * num_addrs > 0 Multicast mode, receive normal and MC packets, * and do best-effort filtering. */ static void set_multicast_list(struct net_device *dev) { /* To do */ } void e100_hardware_send_packet(unsigned long hostcmd, char *buf, int length) { static char bogus_ecp[] = { 42, 42 }; int i; #ifdef ETHDEBUG printk("e100 send pack, buf 0x%x len %d\n", buf, length); #endif host_command = hostcmd; /* Configure the tx dma descriptor. Desc 0 is already configured.*/ TxDescList[1].sw_len = length; /* bug workaround - etrax100 needs d_wait on the descriptor _before_ * a descriptor containing an ECP command */ TxDescList[1].ctrl = d_wait; TxDescList[1].buf = virt_to_phys(buf); TxDescList[1].next = virt_to_phys(&TxDescList[2]); /* append the ecp dummy descriptor - its only purpose is to * make the receiver generate an irq due to the ecp command * so the receiver knows where packets end */ TxDescList[2].sw_len = 1; TxDescList[2].ctrl = d_ecp | d_eol | d_int; TxDescList[2].buf = virt_to_phys(bogus_ecp); /* setup the dma channel and start it */ *R_DMA_CH4_FIRST = virt_to_phys(TxDescList); *R_DMA_CH4_CMD = IO_STATE(R_DMA_CH4_CMD, cmd, start); #ifdef ETHDEBUG printk("done\n"); #endif } /* send a chunk of code to the slave chip to boot it. */ static void boot_slave(unsigned char *code) { int i; #ifdef ETHDEBUG printk(" booting slave ETRAX...\n"); #endif *R_PORT_PB_DATA = 0x7F; /* Reset slave */ udelay(15); /* Time enough to reset WAN tranciever */ *R_PORT_PB_DATA = 0xFF; /* Reset slave */ /* configure the tx dma data descriptor */ TxDescList[1].sw_len = ETRAX_PAR_BOOT_LENGTH; TxDescList[1].ctrl = d_eol | d_int; TxDescList[1].buf = virt_to_phys(code); TxDescList[1].next = 0; /* setup the dma channel and start it */ *R_DMA_CH4_FIRST = virt_to_phys(&TxDescList[1]); *R_DMA_CH4_CMD = IO_STATE(R_DMA_CH4_CMD, cmd, start); /* wait for completion */ while(!(*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma4_descr))); /* ack the irq */ *R_DMA_CH4_CLR_INTR = IO_STATE(R_DMA_CH4_CLR_INTR, clr_descr, do); #if 0 /* manual transfer of boot code - requires dma turned off */ for (i=0; i> 13; printk("Reg mode: %u (ecp_fwd(5), ecp_rev(6))\n", temp); temp = (*R_PAR1_STATUS)&0x1000; temp = temp >> 12; printk("Reg perr: %u (ecp_rev(0))\n", temp); temp = (*R_PAR1_STATUS)&0x0800; temp = temp >> 11; printk("Reg ack: %u (inactive (1), active (0))\n", temp); temp = (*R_PAR1_STATUS)&0x0400; temp = temp >> 10; printk("Reg busy: %u (inactive (0), active (1))\n", temp); temp = (*R_PAR1_STATUS)&0x0200; temp = temp >> 9; printk("Reg fault: %u (inactive (1), active (0))\n", temp); temp = (*R_PAR1_STATUS)&0x0100; temp = temp >> 8; printk("Reg sel: %u (inactive (0), active (1), xflag(1))\n", temp); temp = (*R_PAR1_STATUS)&0x02; temp = temp >> 1; printk("Reg tr_rdy: %u (busy (0), ready (1))\n", temp); } #endif /* ETHDEBUG */ static struct net_device dev_etrax_slave_ethernet; static int etrax_init_module(void) { struct net_device *d = &dev_etrax_slave_ethernet; d->init = etrax_ethernet_lpslave_init; if(register_netdev(d) == 0) return 0; else return -ENODEV; } module_init(etrax_init_module);