/* * linux/arch/arm/kernel/ptrace.c * * By Ross Biro 1/23/92 * edited by Linus Torvalds * ARM modifications Copyright (C) 2000 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "ptrace.h" #define REG_PC 15 #define REG_PSR 16 /* * does not yet catch signals sent when the child dies. * in exit.c or in signal.c. */ /* * Breakpoint SWI instruction: SWI &9F0001 */ #define BREAKINST_ARM 0xef9f0001 /* fill this in later */ #define BREAKINST_THUMB 0xdf00 /* * Get the address of the live pt_regs for the specified task. * These are saved onto the top kernel stack when the process * is not running. * * Note: if a user thread is execve'd from kernel space, the * kernel stack will not be empty on entry to the kernel, so * ptracing these tasks will fail. */ static inline struct pt_regs * get_user_regs(struct task_struct *task) { return (struct pt_regs *) ((unsigned long)task + 8192 - 8 - sizeof(struct pt_regs)); } /* * this routine will get a word off of the processes privileged stack. * the offset is how far from the base addr as stored in the THREAD. * this routine assumes that all the privileged stacks are in our * data space. */ static inline long get_user_reg(struct task_struct *task, int offset) { return get_user_regs(task)->uregs[offset]; } /* * this routine will put a word on the processes privileged stack. * the offset is how far from the base addr as stored in the THREAD. * this routine assumes that all the privileged stacks are in our * data space. */ static inline int put_user_reg(struct task_struct *task, int offset, long data) { struct pt_regs newregs, *regs = get_user_regs(task); int ret = -EINVAL; newregs = *regs; newregs.uregs[offset] = data; if (valid_user_regs(&newregs)) { regs->uregs[offset] = data; ret = 0; } return ret; } static inline int read_u32(struct task_struct *task, unsigned long addr, u32 *res) { int ret; ret = access_process_vm(task, addr, res, sizeof(*res), 0); return ret == sizeof(*res) ? 0 : -EIO; } static inline int read_instr(struct task_struct *task, unsigned long addr, u32 *res) { int ret; if (addr & 1) { u16 val; ret = access_process_vm(task, addr & ~1, &val, sizeof(val), 0); ret = ret == sizeof(val) ? 0 : -EIO; *res = val; } else { u32 val; ret = access_process_vm(task, addr & ~3, &val, sizeof(val), 0); ret = ret == sizeof(val) ? 0 : -EIO; *res = val; } return ret; } /* * Get value of register `rn' (in the instruction) */ static unsigned long ptrace_getrn(struct task_struct *child, unsigned long insn) { unsigned int reg = (insn >> 16) & 15; unsigned long val; val = get_user_reg(child, reg); if (reg == 15) val = pc_pointer(val + 8); return val; } /* * Get value of operand 2 (in an ALU instruction) */ static unsigned long ptrace_getaluop2(struct task_struct *child, unsigned long insn) { unsigned long val; int shift; int type; if (insn & 1 << 25) { val = insn & 255; shift = (insn >> 8) & 15; type = 3; } else { val = get_user_reg (child, insn & 15); if (insn & (1 << 4)) shift = (int)get_user_reg (child, (insn >> 8) & 15); else shift = (insn >> 7) & 31; type = (insn >> 5) & 3; } switch (type) { case 0: val <<= shift; break; case 1: val >>= shift; break; case 2: val = (((signed long)val) >> shift); break; case 3: val = (val >> shift) | (val << (32 - shift)); break; } return val; } /* * Get value of operand 2 (in a LDR instruction) */ static unsigned long ptrace_getldrop2(struct task_struct *child, unsigned long insn) { unsigned long val; int shift; int type; val = get_user_reg(child, insn & 15); shift = (insn >> 7) & 31; type = (insn >> 5) & 3; switch (type) { case 0: val <<= shift; break; case 1: val >>= shift; break; case 2: val = (((signed long)val) >> shift); break; case 3: val = (val >> shift) | (val << (32 - shift)); break; } return val; } #define OP_MASK 0x01e00000 #define OP_AND 0x00000000 #define OP_EOR 0x00200000 #define OP_SUB 0x00400000 #define OP_RSB 0x00600000 #define OP_ADD 0x00800000 #define OP_ADC 0x00a00000 #define OP_SBC 0x00c00000 #define OP_RSC 0x00e00000 #define OP_ORR 0x01800000 #define OP_MOV 0x01a00000 #define OP_BIC 0x01c00000 #define OP_MVN 0x01e00000 static unsigned long get_branch_address(struct task_struct *child, unsigned long pc, unsigned long insn) { u32 alt = 0; switch (insn & 0x0e000000) { case 0x00000000: case 0x02000000: { /* * data processing */ long aluop1, aluop2, ccbit; if ((insn & 0xf000) != 0xf000) break; aluop1 = ptrace_getrn(child, insn); aluop2 = ptrace_getaluop2(child, insn); ccbit = get_user_reg(child, REG_PSR) & CC_C_BIT ? 1 : 0; switch (insn & OP_MASK) { case OP_AND: alt = aluop1 & aluop2; break; case OP_EOR: alt = aluop1 ^ aluop2; break; case OP_SUB: alt = aluop1 - aluop2; break; case OP_RSB: alt = aluop2 - aluop1; break; case OP_ADD: alt = aluop1 + aluop2; break; case OP_ADC: alt = aluop1 + aluop2 + ccbit; break; case OP_SBC: alt = aluop1 - aluop2 + ccbit; break; case OP_RSC: alt = aluop2 - aluop1 + ccbit; break; case OP_ORR: alt = aluop1 | aluop2; break; case OP_MOV: alt = aluop2; break; case OP_BIC: alt = aluop1 & ~aluop2; break; case OP_MVN: alt = ~aluop2; break; } break; } case 0x04000000: case 0x06000000: /* * ldr */ if ((insn & 0x0010f000) == 0x0010f000) { unsigned long base; base = ptrace_getrn(child, insn); if (insn & 1 << 24) { long aluop2; if (insn & 0x02000000) aluop2 = ptrace_getldrop2(child, insn); else aluop2 = insn & 0xfff; if (insn & 1 << 23) base += aluop2; else base -= aluop2; } if (read_u32(child, base, &alt) == 0) alt = pc_pointer(alt); } break; case 0x08000000: /* * ldm */ if ((insn & 0x00108000) == 0x00108000) { unsigned long base; unsigned int nr_regs; if (insn & (1 << 23)) { nr_regs = hweight16(insn & 65535) << 2; if (!(insn & (1 << 24))) nr_regs -= 4; } else { if (insn & (1 << 24)) nr_regs = -4; else nr_regs = 0; } base = ptrace_getrn(child, insn); if (read_u32(child, base + nr_regs, &alt) == 0) alt = pc_pointer(alt); break; } break; case 0x0a000000: { /* * bl or b */ signed long displ; /* It's a branch/branch link: instead of trying to * figure out whether the branch will be taken or not, * we'll put a breakpoint at both locations. This is * simpler, more reliable, and probably not a whole lot * slower than the alternative approach of emulating the * branch. */ displ = (insn & 0x00ffffff) << 8; displ = (displ >> 6) + 8; if (displ != 0 && displ != 4) alt = pc + displ; } break; } return alt; } static int swap_insn(struct task_struct *task, unsigned long addr, void *old_insn, void *new_insn, int size) { int ret; ret = access_process_vm(task, addr, old_insn, size, 0); if (ret == size) ret = access_process_vm(task, addr, new_insn, size, 1); return ret; } static void add_breakpoint(struct task_struct *task, struct debug_info *dbg, unsigned long addr) { int nr = dbg->nsaved; if (nr < 2) { u32 new_insn = BREAKINST_ARM; int res; res = swap_insn(task, addr, &dbg->bp[nr].insn, &new_insn, 4); if (res == 4) { dbg->bp[nr].address = addr; dbg->nsaved += 1; } } else printk(KERN_ERR "ptrace: too many breakpoints\n"); } /* * Clear one breakpoint in the user program. We copy what the hardware * does and use bit 0 of the address to indicate whether this is a Thumb * breakpoint or an ARM breakpoint. */ static void clear_breakpoint(struct task_struct *task, struct debug_entry *bp) { unsigned long addr = bp->address; union debug_insn old_insn; int ret; if (addr & 1) { ret = swap_insn(task, addr & ~1, &old_insn.thumb, &bp->insn.thumb, 2); if (ret != 2 || old_insn.thumb != BREAKINST_THUMB) printk(KERN_ERR "%s:%d: corrupted Thumb breakpoint at " "0x%08lx (0x%04x)\n", task->comm, task->pid, addr, old_insn.thumb); } else { ret = swap_insn(task, addr & ~3, &old_insn.thumb, &bp->insn.thumb, 4); if (ret != 4 || old_insn.arm != BREAKINST_ARM) printk(KERN_ERR "%s:%d: corrupted ARM breakpoint at " "0x%08lx (0x%08x)\n", task->comm, task->pid, addr, old_insn.arm); } } void ptrace_set_bpt(struct task_struct *child) { struct pt_regs *regs; unsigned long pc; u32 insn; int res; regs = get_user_regs(child); pc = instruction_pointer(regs); if (thumb_mode(regs)) { printk(KERN_WARNING "ptrace: can't handle thumb mode\n"); return; } res = read_instr(child, pc, &insn); if (!res) { struct debug_info *dbg = &child->thread.debug; unsigned long alt; dbg->nsaved = 0; alt = get_branch_address(child, pc, insn); if (alt) add_breakpoint(child, dbg, alt); /* * Note that we ignore the result of setting the above * breakpoint since it may fail. When it does, this is * not so much an error, but a forewarning that we may * be receiving a prefetch abort shortly. * * If we don't set this breakpoint here, then we can * loose control of the thread during single stepping. */ if (!alt || predicate(insn) != PREDICATE_ALWAYS) add_breakpoint(child, dbg, pc + 4); } } /* * Ensure no single-step breakpoint is pending. Returns non-zero * value if child was being single-stepped. */ void __ptrace_cancel_bpt(struct task_struct *child) { int i, nsaved = child->thread.debug.nsaved; child->thread.debug.nsaved = 0; if (nsaved > 2) { printk("ptrace_cancel_bpt: bogus nsaved: %d!\n", nsaved); nsaved = 2; } for (i = 0; i < nsaved; i++) clear_breakpoint(child, &child->thread.debug.bp[i]); } /* * Called by kernel/ptrace.c when detaching.. * * Make sure the single step bit is not set. */ void ptrace_disable(struct task_struct *child) { __ptrace_cancel_bpt(child); } /* * Handle hitting a breakpoint. regs points at the instruction. */ void ptrace_break(struct task_struct *tsk, struct pt_regs *regs) { siginfo_t info; /* * The PC is pointing at the next instruction. Fix this. */ regs->ARM_pc -= thumb_mode(regs) ? 2 : 4; __ptrace_cancel_bpt(tsk); info.si_signo = SIGTRAP; info.si_errno = 0; info.si_code = TRAP_BRKPT; info.si_addr = (void *)instruction_pointer(regs); force_sig_info(SIGTRAP, &info, tsk); } /* * Read the word at offset "off" into the "struct user". We * actually access the pt_regs stored on the kernel stack. */ static int ptrace_read_user(struct task_struct *tsk, unsigned long off, unsigned long *ret) { unsigned long tmp; if (off & 3 || off >= sizeof(struct user)) return -EIO; tmp = 0; if (off < sizeof(struct pt_regs)) tmp = get_user_reg(tsk, off >> 2); return put_user(tmp, ret); } /* * Write the word at offset "off" into "struct user". We * actually access the pt_regs stored on the kernel stack. */ static int ptrace_write_user(struct task_struct *tsk, unsigned long off, unsigned long val) { if (off & 3 || off >= sizeof(struct user)) return -EIO; if (off >= sizeof(struct pt_regs)) return 0; return put_user_reg(tsk, off >> 2, val); } /* * Get all user integer registers. */ static int ptrace_getregs(struct task_struct *tsk, void *uregs) { struct pt_regs *regs = get_user_regs(tsk); return copy_to_user(uregs, regs, sizeof(struct pt_regs)) ? -EFAULT : 0; } /* * Set all user integer registers. */ static int ptrace_setregs(struct task_struct *tsk, void *uregs) { struct pt_regs newregs; int ret; ret = -EFAULT; if (copy_from_user(&newregs, uregs, sizeof(struct pt_regs)) == 0) { struct pt_regs *regs = get_user_regs(tsk); ret = -EINVAL; if (valid_user_regs(&newregs)) { *regs = newregs; ret = 0; } } return ret; } /* * Get the child FPU state. */ static int ptrace_getfpregs(struct task_struct *tsk, void *ufp) { return copy_to_user(ufp, &tsk->thread.fpstate, sizeof(struct user_fp)) ? -EFAULT : 0; } /* * Set the child FPU state. */ static int ptrace_setfpregs(struct task_struct *tsk, void *ufp) { tsk->used_math = 1; return copy_from_user(&tsk->thread.fpstate, ufp, sizeof(struct user_fp)) ? -EFAULT : 0; } static int do_ptrace(int request, struct task_struct *child, long addr, long data) { unsigned long tmp; int ret; switch (request) { /* * read word at location "addr" in the child process. */ case PTRACE_PEEKTEXT: case PTRACE_PEEKDATA: ret = access_process_vm(child, addr, &tmp, sizeof(unsigned long), 0); if (ret == sizeof(unsigned long)) ret = put_user(tmp, (unsigned long *) data); else ret = -EIO; break; case PTRACE_PEEKUSR: ret = ptrace_read_user(child, addr, (unsigned long *)data); break; /* * write the word at location addr. */ case PTRACE_POKETEXT: case PTRACE_POKEDATA: ret = access_process_vm(child, addr, &data, sizeof(unsigned long), 1); if (ret == sizeof(unsigned long)) ret = 0; else ret = -EIO; break; case PTRACE_POKEUSR: ret = ptrace_write_user(child, addr, data); break; /* * continue/restart and stop at next (return from) syscall */ case PTRACE_SYSCALL: case PTRACE_CONT: ret = -EIO; if ((unsigned long) data > _NSIG) break; if (request == PTRACE_SYSCALL) child->ptrace |= PT_TRACESYS; else child->ptrace &= ~PT_TRACESYS; child->exit_code = data; /* make sure single-step breakpoint is gone. */ __ptrace_cancel_bpt(child); wake_up_process(child); ret = 0; break; /* * make the child exit. Best I can do is send it a sigkill. * perhaps it should be put in the status that it wants to * exit. */ case PTRACE_KILL: /* make sure single-step breakpoint is gone. */ __ptrace_cancel_bpt(child); if (child->state != TASK_ZOMBIE) { child->exit_code = SIGKILL; wake_up_process(child); } ret = 0; break; /* * execute single instruction. */ case PTRACE_SINGLESTEP: ret = -EIO; if ((unsigned long) data > _NSIG) break; child->thread.debug.nsaved = -1; child->ptrace &= ~PT_TRACESYS; child->exit_code = data; /* give it a chance to run. */ wake_up_process(child); ret = 0; break; case PTRACE_DETACH: ret = ptrace_detach(child, data); break; case PTRACE_GETREGS: ret = ptrace_getregs(child, (void *)data); break; case PTRACE_SETREGS: ret = ptrace_setregs(child, (void *)data); break; case PTRACE_GETFPREGS: ret = ptrace_getfpregs(child, (void *)data); break; case PTRACE_SETFPREGS: ret = ptrace_setfpregs(child, (void *)data); break; case PTRACE_SETOPTIONS: if (data & PTRACE_O_TRACESYSGOOD) child->ptrace |= PT_TRACESYSGOOD; else child->ptrace &= ~PT_TRACESYSGOOD; ret = 0; break; default: ret = -EIO; break; } return ret; } asmlinkage int sys_ptrace(long request, long pid, long addr, long data) { struct task_struct *child; int ret; lock_kernel(); ret = -EPERM; if (request == PTRACE_TRACEME) { /* are we already being traced? */ if (current->ptrace & PT_PTRACED) goto out; /* set the ptrace bit in the process flags. */ current->ptrace |= PT_PTRACED; ret = 0; goto out; } ret = -ESRCH; read_lock(&tasklist_lock); child = find_task_by_pid(pid); if (child) get_task_struct(child); read_unlock(&tasklist_lock); if (!child) goto out; ret = -EPERM; if (pid == 1) /* you may not mess with init */ goto out_tsk; if (request == PTRACE_ATTACH) { ret = ptrace_attach(child); goto out_tsk; } ret = -ESRCH; if (!(child->ptrace & PT_PTRACED)) goto out_tsk; if (child->state != TASK_STOPPED && request != PTRACE_KILL) goto out_tsk; if (child->p_pptr != current) goto out_tsk; ret = do_ptrace(request, child, addr, data); out_tsk: free_task_struct(child); out: unlock_kernel(); return ret; } asmlinkage void syscall_trace(int why, struct pt_regs *regs) { unsigned long ip; if ((current->ptrace & (PT_PTRACED|PT_TRACESYS)) != (PT_PTRACED|PT_TRACESYS)) return; /* * Save IP. IP is used to denote syscall entry/exit: * IP = 0 -> entry, = 1 -> exit */ ip = regs->ARM_ip; regs->ARM_ip = why; /* the 0x80 provides a way for the tracing parent to distinguish between a syscall stop and SIGTRAP delivery */ current->exit_code = SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0); current->state = TASK_STOPPED; notify_parent(current, SIGCHLD); schedule(); /* * this isn't the same as continuing with a signal, but it will do * for normal use. strace only continues with a signal if the * stopping signal is not SIGTRAP. -brl */ if (current->exit_code) { send_sig(current->exit_code, current, 1); current->exit_code = 0; } regs->ARM_ip = ip; }