/* * linux/arch/alpha/kernel/irq.c * * Copyright (C) 1995 Linus Torvalds * * This file contains the code used by various IRQ handling routines: * asking for different IRQ's should be done through these routines * instead of just grabbing them. Thus setups with different IRQ numbers * shouldn't result in any weird surprises, and installing new handlers * should be easier. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Controller mappings for all interrupt sources: */ irq_desc_t irq_desc[NR_IRQS] __cacheline_aligned = { [0 ... NR_IRQS-1] = { 0, &no_irq_type, NULL, 0, SPIN_LOCK_UNLOCKED} }; static void register_irq_proc(unsigned int irq); volatile unsigned long irq_err_count; /* * Special irq handlers. */ void no_action(int cpl, void *dev_id, struct pt_regs *regs) { } /* * Generic no controller code */ static void no_irq_enable_disable(unsigned int irq) { } static unsigned int no_irq_startup(unsigned int irq) { return 0; } static void no_irq_ack(unsigned int irq) { irq_err_count++; printk(KERN_CRIT "Unexpected IRQ trap at vector %u\n", irq); } struct hw_interrupt_type no_irq_type = { typename: "none", startup: no_irq_startup, shutdown: no_irq_enable_disable, enable: no_irq_enable_disable, disable: no_irq_enable_disable, ack: no_irq_ack, end: no_irq_enable_disable, }; int handle_IRQ_event(unsigned int irq, struct pt_regs *regs, struct irqaction *action) { int status; int cpu = smp_processor_id(); kstat.irqs[cpu][irq]++; irq_enter(cpu, irq); status = 1; /* Force the "do bottom halves" bit */ do { if (!(action->flags & SA_INTERRUPT)) __sti(); else __cli(); status |= action->flags; action->handler(irq, action->dev_id, regs); action = action->next; } while (action); if (status & SA_SAMPLE_RANDOM) add_interrupt_randomness(irq); __cli(); irq_exit(cpu, irq); return status; } /* * Generic enable/disable code: this just calls * down into the PIC-specific version for the actual * hardware disable after having gotten the irq * controller lock. */ void inline disable_irq_nosync(unsigned int irq) { irq_desc_t *desc = irq_desc + irq; unsigned long flags; spin_lock_irqsave(&desc->lock, flags); if (!desc->depth++) { desc->status |= IRQ_DISABLED; desc->handler->disable(irq); } spin_unlock_irqrestore(&desc->lock, flags); } /* * Synchronous version of the above, making sure the IRQ is * no longer running on any other IRQ.. */ void disable_irq(unsigned int irq) { disable_irq_nosync(irq); if (!local_irq_count(smp_processor_id())) { do { barrier(); } while (irq_desc[irq].status & IRQ_INPROGRESS); } } void enable_irq(unsigned int irq) { irq_desc_t *desc = irq_desc + irq; unsigned long flags; spin_lock_irqsave(&desc->lock, flags); switch (desc->depth) { case 1: { unsigned int status = desc->status & ~IRQ_DISABLED; desc->status = status; if ((status & (IRQ_PENDING | IRQ_REPLAY)) == IRQ_PENDING) { desc->status = status | IRQ_REPLAY; hw_resend_irq(desc->handler,irq); } desc->handler->enable(irq); /* fall-through */ } default: desc->depth--; break; case 0: printk(KERN_ERR "enable_irq() unbalanced from %p\n", __builtin_return_address(0)); } spin_unlock_irqrestore(&desc->lock, flags); } int setup_irq(unsigned int irq, struct irqaction * new) { int shared = 0; struct irqaction *old, **p; unsigned long flags; irq_desc_t *desc = irq_desc + irq; /* * Some drivers like serial.c use request_irq() heavily, * so we have to be careful not to interfere with a * running system. */ if (new->flags & SA_SAMPLE_RANDOM) { /* * This function might sleep, we want to call it first, * outside of the atomic block. * Yes, this might clear the entropy pool if the wrong * driver is attempted to be loaded, without actually * installing a new handler, but is this really a problem, * only the sysadmin is able to do this. */ rand_initialize_irq(irq); } /* * The following block of code has to be executed atomically */ spin_lock_irqsave(&desc->lock,flags); p = &desc->action; if ((old = *p) != NULL) { /* Can't share interrupts unless both agree to */ if (!(old->flags & new->flags & SA_SHIRQ)) { spin_unlock_irqrestore(&desc->lock,flags); return -EBUSY; } /* add new interrupt at end of irq queue */ do { p = &old->next; old = *p; } while (old); shared = 1; } *p = new; if (!shared) { desc->depth = 0; desc->status &= ~(IRQ_DISABLED | IRQ_INPROGRESS); desc->handler->startup(irq); } spin_unlock_irqrestore(&desc->lock,flags); return 0; } static struct proc_dir_entry * root_irq_dir; static struct proc_dir_entry * irq_dir[NR_IRQS]; #ifdef CONFIG_SMP static struct proc_dir_entry * smp_affinity_entry[NR_IRQS]; static char irq_user_affinity[NR_IRQS]; static unsigned long irq_affinity[NR_IRQS] = { [0 ... NR_IRQS-1] = ~0UL }; static void select_smp_affinity(int irq) { static int last_cpu; int cpu = last_cpu + 1; if (! irq_desc[irq].handler->set_affinity || irq_user_affinity[irq]) return; while (((cpu_present_mask >> cpu) & 1) == 0) cpu = (cpu < (NR_CPUS-1) ? cpu + 1 : 0); last_cpu = cpu; irq_affinity[irq] = 1UL << cpu; irq_desc[irq].handler->set_affinity(irq, 1UL << cpu); } #define HEX_DIGITS 16 static int irq_affinity_read_proc (char *page, char **start, off_t off, int count, int *eof, void *data) { if (count < HEX_DIGITS+1) return -EINVAL; return sprintf (page, "%016lx\n", irq_affinity[(long)data]); } static unsigned int parse_hex_value (const char *buffer, unsigned long count, unsigned long *ret) { unsigned char hexnum [HEX_DIGITS]; unsigned long value; int i; if (!count) return -EINVAL; if (count > HEX_DIGITS) count = HEX_DIGITS; if (copy_from_user(hexnum, buffer, count)) return -EFAULT; /* * Parse the first 8 characters as a hex string, any non-hex char * is end-of-string. '00e1', 'e1', '00E1', 'E1' are all the same. */ value = 0; for (i = 0; i < count; i++) { unsigned int c = hexnum[i]; switch (c) { case '0' ... '9': c -= '0'; break; case 'a' ... 'f': c -= 'a'-10; break; case 'A' ... 'F': c -= 'A'-10; break; default: goto out; } value = (value << 4) | c; } out: *ret = value; return 0; } static int irq_affinity_write_proc(struct file *file, const char *buffer, unsigned long count, void *data) { int irq = (long) data, full_count = count, err; unsigned long new_value; if (!irq_desc[irq].handler->set_affinity) return -EIO; err = parse_hex_value(buffer, count, &new_value); /* The special value 0 means release control of the affinity to kernel. */ if (new_value == 0) { irq_user_affinity[irq] = 0; select_smp_affinity(irq); } /* Do not allow disabling IRQs completely - it's a too easy way to make the system unusable accidentally :-) At least one online CPU still has to be targeted. */ else if (!(new_value & cpu_present_mask)) return -EINVAL; else { irq_affinity[irq] = new_value; irq_user_affinity[irq] = 1; irq_desc[irq].handler->set_affinity(irq, new_value); } return full_count; } static int prof_cpu_mask_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { unsigned long *mask = (unsigned long *) data; if (count < HEX_DIGITS+1) return -EINVAL; return sprintf (page, "%016lx\n", *mask); } static int prof_cpu_mask_write_proc(struct file *file, const char *buffer, unsigned long count, void *data) { unsigned long *mask = (unsigned long *) data, full_count = count, err; unsigned long new_value; err = parse_hex_value(buffer, count, &new_value); if (err) return err; *mask = new_value; return full_count; } #endif /* CONFIG_SMP */ #define MAX_NAMELEN 10 static void register_irq_proc (unsigned int irq) { #ifdef CONFIG_SMP struct proc_dir_entry *entry; #endif char name [MAX_NAMELEN]; if (!root_irq_dir || (irq_desc[irq].handler == &no_irq_type)) return; memset(name, 0, MAX_NAMELEN); sprintf(name, "%d", irq); /* create /proc/irq/1234 */ irq_dir[irq] = proc_mkdir(name, root_irq_dir); #ifdef CONFIG_SMP if (irq_desc[irq].handler->set_affinity) { /* create /proc/irq/1234/smp_affinity */ entry = create_proc_entry("smp_affinity", 0600, irq_dir[irq]); entry->nlink = 1; entry->data = (void *)(long)irq; entry->read_proc = irq_affinity_read_proc; entry->write_proc = irq_affinity_write_proc; smp_affinity_entry[irq] = entry; } #endif } unsigned long prof_cpu_mask = ~0UL; void init_irq_proc (void) { #ifdef CONFIG_SMP struct proc_dir_entry *entry; #endif int i; /* create /proc/irq */ root_irq_dir = proc_mkdir("irq", 0); #ifdef CONFIG_SMP /* create /proc/irq/prof_cpu_mask */ entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir); entry->nlink = 1; entry->data = (void *)&prof_cpu_mask; entry->read_proc = prof_cpu_mask_read_proc; entry->write_proc = prof_cpu_mask_write_proc; #endif /* * Create entries for all existing IRQs. If the number of IRQs * is greater the 1/4 the total dynamic inode space for /proc, * don't pollute the inode space */ if (ACTUAL_NR_IRQS < (PROC_NDYNAMIC / 4)) { for (i = 0; i < ACTUAL_NR_IRQS; i++) { if (irq_desc[i].handler == &no_irq_type) continue; register_irq_proc(i); } } } int request_irq(unsigned int irq, void (*handler)(int, void *, struct pt_regs *), unsigned long irqflags, const char * devname, void *dev_id) { int retval; struct irqaction * action; if (irq >= ACTUAL_NR_IRQS) return -EINVAL; if (!handler) return -EINVAL; #if 1 /* * Sanity-check: shared interrupts should REALLY pass in * a real dev-ID, otherwise we'll have trouble later trying * to figure out which interrupt is which (messes up the * interrupt freeing logic etc). */ if ((irqflags & SA_SHIRQ) && !dev_id) { printk(KERN_ERR "Bad boy: %s (at %p) called us without a dev_id!\n", devname, __builtin_return_address(0)); } #endif action = (struct irqaction *) kmalloc(sizeof(struct irqaction), GFP_KERNEL); if (!action) return -ENOMEM; action->handler = handler; action->flags = irqflags; action->mask = 0; action->name = devname; action->next = NULL; action->dev_id = dev_id; #ifdef CONFIG_SMP select_smp_affinity(irq); #endif retval = setup_irq(irq, action); if (retval) kfree(action); return retval; } void free_irq(unsigned int irq, void *dev_id) { irq_desc_t *desc; struct irqaction **p; unsigned long flags; if (irq >= ACTUAL_NR_IRQS) { printk(KERN_CRIT "Trying to free IRQ%d\n", irq); return; } desc = irq_desc + irq; spin_lock_irqsave(&desc->lock,flags); p = &desc->action; for (;;) { struct irqaction * action = *p; if (action) { struct irqaction **pp = p; p = &action->next; if (action->dev_id != dev_id) continue; /* Found - now remove it from the list of entries. */ *pp = action->next; if (!desc->action) { desc->status |= IRQ_DISABLED; desc->handler->shutdown(irq); } spin_unlock_irqrestore(&desc->lock,flags); #ifdef CONFIG_SMP /* Wait to make sure it's not being used on another CPU. */ while (desc->status & IRQ_INPROGRESS) barrier(); #endif kfree(action); return; } printk(KERN_ERR "Trying to free free IRQ%d\n",irq); spin_unlock_irqrestore(&desc->lock,flags); return; } } int get_irq_list(char *buf) { #ifdef CONFIG_SMP int j; #endif int i; struct irqaction * action; char *p = buf; #ifdef CONFIG_SMP p += sprintf(p, " "); for (i = 0; i < smp_num_cpus; i++) p += sprintf(p, "CPU%d ", i); #ifdef DO_BROADCAST_INTS for (i = 0; i < smp_num_cpus; i++) p += sprintf(p, "TRY%d ", i); #endif *p++ = '\n'; #endif for (i = 0; i < ACTUAL_NR_IRQS; i++) { action = irq_desc[i].action; if (!action) continue; p += sprintf(p, "%3d: ",i); #ifndef CONFIG_SMP p += sprintf(p, "%10u ", kstat_irqs(i)); #else for (j = 0; j < smp_num_cpus; j++) p += sprintf(p, "%10u ", kstat.irqs[cpu_logical_map(j)][i]); #ifdef DO_BROADCAST_INTS for (j = 0; j < smp_num_cpus; j++) p += sprintf(p, "%10lu ", irq_attempt(cpu_logical_map(j), i)); #endif #endif p += sprintf(p, " %14s", irq_desc[i].handler->typename); p += sprintf(p, " %c%s", (action->flags & SA_INTERRUPT)?'+':' ', action->name); for (action=action->next; action; action = action->next) { p += sprintf(p, ", %c%s", (action->flags & SA_INTERRUPT)?'+':' ', action->name); } *p++ = '\n'; } #if CONFIG_SMP p += sprintf(p, "IPI: "); for (j = 0; j < smp_num_cpus; j++) p += sprintf(p, "%10lu ", cpu_data[cpu_logical_map(j)].ipi_count); p += sprintf(p, "\n"); #endif p += sprintf(p, "ERR: %10lu\n", irq_err_count); return p - buf; } /* * handle_irq handles all normal device IRQ's (the special * SMP cross-CPU interrupts have their own specific * handlers). */ #define MAX_ILLEGAL_IRQS 16 void handle_irq(int irq, struct pt_regs * regs) { /* * We ack quickly, we don't want the irq controller * thinking we're snobs just because some other CPU has * disabled global interrupts (we have already done the * INT_ACK cycles, it's too late to try to pretend to the * controller that we aren't taking the interrupt). * * 0 return value means that this irq is already being * handled by some other CPU. (or is disabled) */ int cpu = smp_processor_id(); irq_desc_t *desc = irq_desc + irq; struct irqaction * action; unsigned int status; static unsigned int illegal_count=0; if ((unsigned) irq > ACTUAL_NR_IRQS && illegal_count < MAX_ILLEGAL_IRQS ) { irq_err_count++; illegal_count++; printk(KERN_CRIT "device_interrupt: illegal interrupt %d\n", irq); return; } irq_attempt(cpu, irq)++; spin_lock_irq(&desc->lock); /* mask also the higher prio events */ desc->handler->ack(irq); /* * REPLAY is when Linux resends an IRQ that was dropped earlier. * WAITING is used by probe to mark irqs that are being tested. */ status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING); status |= IRQ_PENDING; /* we _want_ to handle it */ /* * If the IRQ is disabled for whatever reason, we cannot * use the action we have. */ action = NULL; if (!(status & (IRQ_DISABLED | IRQ_INPROGRESS))) { action = desc->action; status &= ~IRQ_PENDING; /* we commit to handling */ status |= IRQ_INPROGRESS; /* we are handling it */ } desc->status = status; /* * If there is no IRQ handler or it was disabled, exit early. * Since we set PENDING, if another processor is handling * a different instance of this same irq, the other processor * will take care of it. */ if (!action) goto out; /* * Edge triggered interrupts need to remember pending events. * This applies to any hw interrupts that allow a second * instance of the same irq to arrive while we are in handle_irq * or in the handler. But the code here only handles the _second_ * instance of the irq, not the third or fourth. So it is mostly * useful for irq hardware that does not mask cleanly in an * SMP environment. */ for (;;) { spin_unlock(&desc->lock); handle_IRQ_event(irq, regs, action); spin_lock(&desc->lock); if (!(desc->status & IRQ_PENDING) || (desc->status & IRQ_LEVEL)) break; desc->status &= ~IRQ_PENDING; } desc->status &= ~IRQ_INPROGRESS; out: /* * The ->end() handler has to deal with interrupts which got * disabled while the handler was running. */ desc->handler->end(irq); spin_unlock(&desc->lock); if (softirq_pending(cpu)) do_softirq(); } /* * IRQ autodetection code.. * * This depends on the fact that any interrupt that * comes in on to an unassigned handler will get stuck * with "IRQ_WAITING" cleared and the interrupt * disabled. */ unsigned long probe_irq_on(void) { int i; irq_desc_t *desc; unsigned long delay; unsigned long val; /* Something may have generated an irq long ago and we want to flush such a longstanding irq before considering it as spurious. */ for (i = NR_IRQS-1; i >= 0; i--) { desc = irq_desc + i; spin_lock_irq(&desc->lock); if (!irq_desc[i].action) irq_desc[i].handler->startup(i); spin_unlock_irq(&desc->lock); } /* Wait for longstanding interrupts to trigger. */ for (delay = jiffies + HZ/50; time_after(delay, jiffies); ) /* about 20ms delay */ synchronize_irq(); /* enable any unassigned irqs (we must startup again here because if a longstanding irq happened in the previous stage, it may have masked itself) first, enable any unassigned irqs. */ for (i = NR_IRQS-1; i >= 0; i--) { desc = irq_desc + i; spin_lock_irq(&desc->lock); if (!desc->action) { desc->status |= IRQ_AUTODETECT | IRQ_WAITING; if (desc->handler->startup(i)) desc->status |= IRQ_PENDING; } spin_unlock_irq(&desc->lock); } /* * Wait for spurious interrupts to trigger */ for (delay = jiffies + HZ/10; time_after(delay, jiffies); ) /* about 100ms delay */ synchronize_irq(); /* * Now filter out any obviously spurious interrupts */ val = 0; for (i=0; ilock); status = desc->status; if (status & IRQ_AUTODETECT) { /* It triggered already - consider it spurious. */ if (!(status & IRQ_WAITING)) { desc->status = status & ~IRQ_AUTODETECT; desc->handler->shutdown(i); } else if (i < 32) val |= 1 << i; } spin_unlock_irq(&desc->lock); } return val; } /* * Return a mask of triggered interrupts (this * can handle only legacy ISA interrupts). */ unsigned int probe_irq_mask(unsigned long val) { int i; unsigned int mask; mask = 0; for (i = 0; i < NR_IRQS; i++) { irq_desc_t *desc = irq_desc + i; unsigned int status; spin_lock_irq(&desc->lock); status = desc->status; if (status & IRQ_AUTODETECT) { /* We only react to ISA interrupts */ if (!(status & IRQ_WAITING)) { if (i < 16) mask |= 1 << i; } desc->status = status & ~IRQ_AUTODETECT; desc->handler->shutdown(i); } spin_unlock_irq(&desc->lock); } return mask & val; } /* * Get the result of the IRQ probe.. A negative result means that * we have several candidates (but we return the lowest-numbered * one). */ int probe_irq_off(unsigned long val) { int i, irq_found, nr_irqs; nr_irqs = 0; irq_found = 0; for (i=0; ilock); status = desc->status; if (status & IRQ_AUTODETECT) { if (!(status & IRQ_WAITING)) { if (!nr_irqs) irq_found = i; nr_irqs++; } desc->status = status & ~IRQ_AUTODETECT; desc->handler->shutdown(i); } spin_unlock_irq(&desc->lock); } if (nr_irqs > 1) irq_found = -irq_found; return irq_found; }