/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MINMAX_H #define _LINUX_MINMAX_H #include "linux/const.h" #include "linux/compiler.h" #include "types.h" /* * min()/max()/clamp() macros must accomplish three things: * * - avoid multiple evaluations of the arguments (so side-effects like * "x++" happen only once) when non-constant. * - perform strict type-checking (to generate warnings instead of * nasty runtime surprises). See the "unnecessary" pointer comparison * in __typecheck(). * - retain result as a constant expressions when called with only * constant expressions (to avoid tripping VLA warnings in stack * allocation usage). */ #define __typecheck(x, y) (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1))) #define __no_side_effects(x, y) (__is_constexpr(x) && __is_constexpr(y)) #define __safe_cmp(x, y) (__typecheck(x, y) && __no_side_effects(x, y)) #define __cmp(x, y, op) ((x)op(y) ? (x) : (y)) #define __cmp_once(x, y, unique_x, unique_y, op) \ ({ \ typeof(x) unique_x = (x); \ typeof(y) unique_y = (y); \ __cmp(unique_x, unique_y, op); \ }) #define __careful_cmp(x, y, op) \ __builtin_choose_expr(__safe_cmp(x, y), __cmp(x, y, op), \ __cmp_once(x, y, __UNIQUE_ID(__x), \ __UNIQUE_ID(__y), op)) #define __clamp(val, lo, hi) \ ((val) >= (hi) ? (hi) : ((val) <= (lo) ? (lo) : (val))) #define __clamp_once(val, lo, hi, unique_val, unique_lo, unique_hi) \ ({ \ typeof(val) unique_val = (val); \ typeof(lo) unique_lo = (lo); \ typeof(hi) unique_hi = (hi); \ __clamp(unique_val, unique_lo, unique_hi); \ }) #define __clamp_input_check(lo, hi) \ (BUILD_BUG_ON_ZERO(__builtin_choose_expr(__is_constexpr((lo) > (hi)), \ (lo) > (hi), false))) #define __careful_clamp(val, lo, hi) \ ({ \ __clamp_input_check(lo, hi) + \ __builtin_choose_expr( \ __typecheck(val, lo) && \ __typecheck(val, hi) && \ __typecheck(hi, lo) && \ __is_constexpr(val) && \ __is_constexpr(lo) && \ __is_constexpr(hi), \ __clamp(val, lo, hi), \ __clamp_once(val, lo, hi, __UNIQUE_ID(__val), \ __UNIQUE_ID(__lo), \ __UNIQUE_ID(__hi))); \ }) /** * min - return minimum of two values of the same or compatible types * @x: first value * @y: second value */ #define min(x, y) __careful_cmp(x, y, <) /** * max - return maximum of two values of the same or compatible types * @x: first value * @y: second value */ #define max(x, y) __careful_cmp(x, y, >) /** * min3 - return minimum of three values * @x: first value * @y: second value * @z: third value */ #define min3(x, y, z) min((typeof(x))min(x, y), z) /** * max3 - return maximum of three values * @x: first value * @y: second value * @z: third value */ #define max3(x, y, z) max((typeof(x))max(x, y), z) /** * min_not_zero - return the minimum that is _not_ zero, unless both are zero * @x: value1 * @y: value2 */ #define min_not_zero(x, y) \ ({ \ typeof(x) __x = (x); \ typeof(y) __y = (y); \ __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); \ }) /** * clamp - return a value clamped to a given range with strict typechecking * @val: current value * @lo: lowest allowable value * @hi: highest allowable value * * This macro does strict typechecking of @lo/@hi to make sure they are of the * same type as @val. See the unnecessary pointer comparisons. */ #define clamp(val, lo, hi) __careful_clamp(val, lo, hi) /* * ..and if you can't take the strict * types, you can specify one yourself. * * Or not use min/max/clamp at all, of course. */ /** * min_t - return minimum of two values, using the specified type * @type: data type to use * @x: first value * @y: second value */ #define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <) /** * max_t - return maximum of two values, using the specified type * @type: data type to use * @x: first value * @y: second value */ #define max_t(type, x, y) __careful_cmp((type)(x), (type)(y), >) /* * Remove a const qualifier from integer types * _Generic(foo, type-name: association, ..., default: association) performs a * comparison against the foo type (not the qualified type). * Do not use the const keyword in the type-name as it will not match the * unqualified type of foo. */ #define __unconst_integer_type_cases(type) \ unsigned type : (unsigned type)0, signed type : (signed type)0 #define __unconst_integer_typeof(x) \ typeof(_Generic((x), char \ : (char)0, __unconst_integer_type_cases(char), \ __unconst_integer_type_cases(short), \ __unconst_integer_type_cases(int), \ __unconst_integer_type_cases(long), \ __unconst_integer_type_cases(long long), default \ : (x))) /* * Do not check the array parameter using __must_be_array(). * In the following legit use-case where the "array" passed is a simple pointer, * __must_be_array() will return a failure. * --- 8< --- * int *buff * ... * min = min_array(buff, nb_items); * --- 8< --- * * The first typeof(&(array)[0]) is needed in order to support arrays of both * 'int *buff' and 'int buff[N]' types. * * The array can be an array of const items. * typeof() keeps the const qualifier. Use __unconst_integer_typeof() in order * to discard the const qualifier for the __element variable. */ #define __minmax_array(op, array, len) \ ({ \ typeof(&(array)[0]) __array = (array); \ typeof(len) __len = (len); \ __unconst_integer_typeof(__array[0]) \ __element = __array[--__len]; \ while (__len--) \ __element = op(__element, __array[__len]); \ __element; \ }) /** * min_array - return minimum of values present in an array * @array: array * @len: array length * * Note that @len must not be zero (empty array). */ #define min_array(array, len) __minmax_array(min, array, len) /** * max_array - return maximum of values present in an array * @array: array * @len: array length * * Note that @len must not be zero (empty array). */ #define max_array(array, len) __minmax_array(max, array, len) /** * clamp_t - return a value clamped to a given range using a given type * @type: the type of variable to use * @val: current value * @lo: minimum allowable value * @hi: maximum allowable value * * This macro does no typechecking and uses temporary variables of type * @type to make all the comparisons. */ #define clamp_t(type, val, lo, hi) \ __careful_clamp((type)(val), (type)(lo), (type)(hi)) /** * clamp_val - return a value clamped to a given range using val's type * @val: current value * @lo: minimum allowable value * @hi: maximum allowable value * * This macro does no typechecking and uses temporary variables of whatever * type the input argument @val is. This is useful when @val is an unsigned * type and @lo and @hi are literals that will otherwise be assigned a signed * integer type. */ #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi) static inline bool in_range64(u64 val, u64 start, u64 len) { return (val - start) < len; } static inline bool in_range32(u32 val, u32 start, u32 len) { return (val - start) < len; } /** * in_range - Determine if a value lies within a range. * @val: Value to test. * @start: First value in range. * @len: Number of values in range. * * This is more efficient than "if (start <= val && val < (start + len))". * It also gives a different answer if @start + @len overflows the size of * the type by a sufficient amount to encompass @val. Decide for yourself * which behaviour you want, or prove that start + len never overflow. * Do not blindly replace one form with the other. */ #define in_range(val, start, len) \ ((sizeof(start) | sizeof(len) | sizeof(val)) <= sizeof(u32) ? \ in_range32(val, start, len) : \ in_range64(val, start, len)) /** * swap - swap values of @a and @b * @a: first value * @b: second value */ #define swap(a, b) \ do { \ typeof(a) __tmp = (a); \ (a) = (b); \ (b) = __tmp; \ } while (0) #endif /* _LINUX_MINMAX_H */