#include "dragonstub/printk.h" #include "efidef.h" #include #include #include #include #include #include #include /* * This is the base address at which to start allocating virtual memory ranges * for UEFI Runtime Services. * * For ARM/ARM64: * This is in the low TTBR0 range so that we can use * any allocation we choose, and eliminate the risk of a conflict after kexec. * The value chosen is the largest non-zero power of 2 suitable for this purpose * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can * be mapped efficiently. * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split, * map everything below 1 GB. (512 MB is a reasonable upper bound for the * entire footprint of the UEFI runtime services memory regions) * * For RISC-V: * There is no specific reason for which, this address (512MB) can't be used * EFI runtime virtual address for RISC-V. It also helps to use EFI runtime * services on both RV32/RV64. Keep the same runtime virtual address for RISC-V * as well to minimize the code churn. */ #define EFI_RT_VIRTUAL_BASE SZ_512M /* * Some architectures map the EFI regions into the kernel's linear map using a * fixed offset. */ #ifndef EFI_RT_VIRTUAL_OFFSET #define EFI_RT_VIRTUAL_OFFSET 0 #endif extern void _image_end(void); static u64 image_base = 0; static u64 image_size = 0; static u64 image_end = 0; static u64 virtmap_base = EFI_RT_VIRTUAL_BASE; static bool flat_va_mapping = (EFI_RT_VIRTUAL_OFFSET != 0); EFI_STATUS efi_handle_cmdline(EFI_LOADED_IMAGE *image, char **cmdline_ptr) { int cmdline_size = 0; EFI_STATUS status; char *cmdline; /* * Get the command line from EFI, using the LOADED_IMAGE * protocol. We are going to copy the command line into the * device tree, so this can be allocated anywhere. */ cmdline = efi_convert_cmdline(image, &cmdline_size); if (!cmdline) { efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n"); return EFI_OUT_OF_RESOURCES; } // if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) || // IS_ENABLED(CONFIG_CMDLINE_FORCE) || // cmdline_size == 0) { // status = efi_parse_options(CONFIG_CMDLINE); // if (status != EFI_SUCCESS) { // efi_err("Failed to parse options\n"); // goto fail_free_cmdline; // } // } // if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0) { if (cmdline_size > 0) { status = efi_parse_options(cmdline); if (status != EFI_SUCCESS) { efi_err("Failed to parse options\n"); goto fail_free_cmdline; } } *cmdline_ptr = cmdline; return EFI_SUCCESS; fail_free_cmdline: efi_bs_call(FreePool, cmdline_ptr); return status; } static efi_status_t init_efi_program_info(efi_loaded_image_t *loaded_image) { image_base = (u64)loaded_image->ImageBase; image_size = loaded_image->ImageSize; image_end = (u64)_image_end; efi_info("DragonStub loaded at 0x%p\n", image_base); efi_info("DragonStub + payload size: 0x%p\n", image_size); efi_info("DragonStub end addr: 0x%p\n", image_end); return EFI_SUCCESS; } /// @brief payload_info的构造函数 static struct payload_info payload_info_new(u64 payload_addr, u64 payload_size) { struct payload_info info = { .payload_addr = payload_addr, .payload_size = payload_size, .loaded_paddr = 0, .loaded_size = 0, .kernel_entry = 0 }; return info; } static efi_status_t find_elf(struct payload_info *info) { extern __weak void _binary_payload_start(void); extern __weak void _binary_payload_end(void); extern __weak void _binary_payload_size(void); u64 payload_start = (u64)_binary_payload_start; u64 payload_end = (u64)_binary_payload_end; u64 payload_size = payload_end - payload_start; efi_info("payload_addr: %p\n", payload_start); efi_info("payload_end: %p\n", payload_end); efi_info("payload_size: %p\n", payload_size); if (payload_start == 0 || payload_end <= payload_start + 4 || payload_size == 0) { return EFI_NOT_FOUND; } efi_info("Checking payload's ELF header...\n"); bool found = elf_check((void *)payload_start, payload_size); if (found) { info->payload_addr = payload_start; info->payload_size = payload_size; efi_info("Found payload ELF header\n"); return EFI_SUCCESS; } return EFI_NOT_FOUND; } /// @brief 寻找要加载的内核负载 /// @param handle efi_handle /// @param image efi_loaded_image_t /// @param ret_info 返回的负载信息 /// @return efi_status_t find_payload(efi_handle_t handle, efi_loaded_image_t *loaded_image, struct payload_info *ret_info) { efi_info("Try to find payload to boot\n"); efi_status_t status = init_efi_program_info(loaded_image); if (status != EFI_SUCCESS) { efi_err("Failed to init efi program info\n"); return status; } struct payload_info info = payload_info_new(0, 0); status = find_elf(&info); if (status != EFI_SUCCESS) { efi_err("Payload not found: Did you forget to add the payload by setting PAYLOAD_ELF at compile time?\n" "Or the payload is not an ELF file?\n"); return status; } *ret_info = info; return EFI_SUCCESS; } /* * efi_allocate_virtmap() - create a pool allocation for the virtmap * * Create an allocation that is of sufficient size to hold all the memory * descriptors that will be passed to SetVirtualAddressMap() to inform the * firmware about the virtual mapping that will be used under the OS to call * into the firmware. */ efi_status_t efi_alloc_virtmap(efi_memory_desc_t **virtmap, unsigned long *desc_size, u32 *desc_ver) { unsigned long size, mmap_key; efi_status_t status; /* * Use the size of the current memory map as an upper bound for the * size of the buffer we need to pass to SetVirtualAddressMap() to * cover all EFI_MEMORY_RUNTIME regions. */ size = 0; status = efi_bs_call(GetMemoryMap, &size, NULL, &mmap_key, desc_size, desc_ver); if (status != EFI_BUFFER_TOO_SMALL) return EFI_LOAD_ERROR; return efi_bs_call(AllocatePool, EfiLoaderData, size, (void **)virtmap); } /* * efi_get_virtmap() - create a virtual mapping for the EFI memory map * * This function populates the virt_addr fields of all memory region descriptors * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors * are also copied to @runtime_map, and their total count is returned in @count. */ void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size, unsigned long desc_size, efi_memory_desc_t *runtime_map, int *count) { u64 efi_virt_base = virtmap_base; efi_memory_desc_t *in, *out = runtime_map; int l; *count = 0; for (l = 0; l < map_size; l += desc_size) { u64 paddr, size; in = (void *)memory_map + l; if (!(in->Attribute & EFI_MEMORY_RUNTIME)) continue; paddr = in->PhysicalStart; size = in->NumberOfPages * EFI_PAGE_SIZE; in->VirtualStart = in->PhysicalStart + EFI_RT_VIRTUAL_OFFSET; if (efi_novamap) { continue; } /* * Make the mapping compatible with 64k pages: this allows * a 4k page size kernel to kexec a 64k page size kernel and * vice versa. */ if (!flat_va_mapping) { paddr = round_down(in->PhysicalStart, SZ_64K); size += in->PhysicalStart - paddr; /* * Avoid wasting memory on PTEs by choosing a virtual * base that is compatible with section mappings if this * region has the appropriate size and physical * alignment. (Sections are 2 MB on 4k granule kernels) */ if (IS_ALIGNED(in->PhysicalStart, SZ_2M) && size >= SZ_2M) efi_virt_base = round_up(efi_virt_base, SZ_2M); else efi_virt_base = round_up(efi_virt_base, SZ_64K); in->VirtualStart += efi_virt_base - paddr; efi_virt_base += size; } memcpy(out, in, desc_size); out = (void *)out + desc_size; ++*count; } } /// @brief 设置内存保留表 /// @param static void install_memreserve_table(void) { struct linux_efi_memreserve *rsv; efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID; efi_status_t status; status = efi_bs_call(AllocatePool, EfiLoaderData, sizeof(*rsv), (void **)&rsv); if (status != EFI_SUCCESS) { efi_err("Failed to allocate memreserve entry!\n"); return; } rsv->next = 0; rsv->size = 0; rsv->count = 0; status = efi_bs_call(InstallConfigurationTable, &memreserve_table_guid, rsv); if (status != EFI_SUCCESS) efi_err("Failed to install memreserve config table!\n"); } static u32 get_supported_rt_services(void) { const efi_rt_properties_table_t *rt_prop_table; u32 supported = EFI_RT_SUPPORTED_ALL; rt_prop_table = get_efi_config_table(EFI_RT_PROPERTIES_TABLE_GUID); if (rt_prop_table) supported &= rt_prop_table->runtime_services_supported; return supported; } efi_status_t efi_stub_common(efi_handle_t handle, efi_loaded_image_t *loaded_image, struct payload_info *payload_info, char *cmdline_ptr) { struct screen_info *si; efi_status_t status; status = check_platform_features(); if (status != EFI_SUCCESS) return status; // si = setup_graphics(); // efi_retrieve_tpm2_eventlog(); // /* Ask the firmware to clear memory on unclean shutdown */ // efi_enable_reset_attack_mitigation(); // efi_load_initrd(image, ULONG_MAX, efi_get_max_initrd_addr(image_addr), // NULL); // efi_random_get_seed(); /* force efi_novamap if SetVirtualAddressMap() is unsupported */ efi_novamap |= !(get_supported_rt_services() & EFI_RT_SUPPORTED_SET_VIRTUAL_ADDRESS_MAP); install_memreserve_table(); efi_info("Memreserve table installed\n"); efi_info("Booting DragonOS kernel...\n"); status = efi_boot_kernel(handle, loaded_image, payload_info, cmdline_ptr); // free_screen_info(si); return status; }