#include "dragonstub/elfloader.h" #include "dragonstub/printk.h" #include "efidef.h" #include #include #include struct exit_boot_struct { struct efi_boot_memmap *boot_memmap; efi_memory_desc_t *runtime_map; int runtime_entry_count; void *new_fdt_addr; }; #define EFI_DT_ADDR_CELLS_DEFAULT 2 #define EFI_DT_SIZE_CELLS_DEFAULT 2 static void fdt_update_cell_size(void *fdt) { int offset; offset = fdt_path_offset(fdt, "/"); /* Set the #address-cells and #size-cells values for an empty tree */ fdt_setprop_u32(fdt, offset, "#address-cells", EFI_DT_ADDR_CELLS_DEFAULT); fdt_setprop_u32(fdt, offset, "#size-cells", EFI_DT_SIZE_CELLS_DEFAULT); } static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map) { int node = fdt_path_offset(fdt, "/chosen"); u64 fdt_val64; u32 fdt_val32; int err; if (node < 0) return EFI_LOAD_ERROR; fdt_val64 = cpu_to_fdt64((unsigned long)map->map); err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-start", fdt_val64); if (err) return EFI_LOAD_ERROR; fdt_val32 = cpu_to_fdt32(map->map_size); err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-size", fdt_val32); if (err) return EFI_LOAD_ERROR; fdt_val32 = cpu_to_fdt32(map->desc_size); err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32); if (err) return EFI_LOAD_ERROR; fdt_val32 = cpu_to_fdt32(map->desc_ver); err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32); if (err) return EFI_LOAD_ERROR; return EFI_SUCCESS; } static efi_status_t update_fdt(void *orig_fdt, unsigned long orig_fdt_size, void *fdt, int new_fdt_size, char *cmdline_ptr) { int node, num_rsv; int status; u32 fdt_val32; u64 fdt_val64; /* Do some checks on provided FDT, if it exists: */ if (orig_fdt) { if (fdt_check_header(orig_fdt)) { efi_err("Device Tree header not valid!\n"); return EFI_LOAD_ERROR; } /* * We don't get the size of the FDT if we get if from a * configuration table: */ if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) { efi_err("Truncated device tree! foo!\n"); return EFI_LOAD_ERROR; } } if (orig_fdt) { status = fdt_open_into(orig_fdt, fdt, new_fdt_size); } else { status = fdt_create_empty_tree(fdt, new_fdt_size); if (status == 0) { /* * Any failure from the following function is * non-critical: */ fdt_update_cell_size(fdt); } } if (status != 0) goto fdt_set_fail; /* * Delete all memory reserve map entries. When booting via UEFI, * kernel will use the UEFI memory map to find reserved regions. */ num_rsv = fdt_num_mem_rsv(fdt); while (num_rsv-- > 0) fdt_del_mem_rsv(fdt, num_rsv); node = fdt_subnode_offset(fdt, 0, "chosen"); if (node < 0) { node = fdt_add_subnode(fdt, 0, "chosen"); if (node < 0) { /* 'node' is an error code when negative: */ status = node; goto fdt_set_fail; } } if (cmdline_ptr != NULL && strlen(cmdline_ptr) > 0) { status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr, strlen(cmdline_ptr) + 1); if (status) goto fdt_set_fail; } /* Add FDT entries for EFI runtime services in chosen node. */ node = fdt_subnode_offset(fdt, 0, "chosen"); fdt_val64 = cpu_to_fdt64((u64)(unsigned long)ST); status = fdt_setprop_var(fdt, node, "linux,uefi-system-table", fdt_val64); if (status) goto fdt_set_fail; fdt_val64 = UINT64_MAX; /* placeholder */ status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-start", fdt_val64); if (status) goto fdt_set_fail; fdt_val32 = UINT32_MAX; /* placeholder */ status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-size", fdt_val32); if (status) goto fdt_set_fail; status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32); if (status) goto fdt_set_fail; status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32); if (status) goto fdt_set_fail; bool enalbed_ramdomize_base = false; #ifdef CONFIG_RANDOMIZE_BASE enalbed_ramdomize_base = true; #endif if (enalbed_ramdomize_base && !efi_nokaslr) { efi_status_t efi_status; efi_status = efi_get_random_bytes(sizeof(fdt_val64), (u8 *)&fdt_val64); if (efi_status == EFI_SUCCESS) { status = fdt_setprop_var(fdt, node, "kaslr-seed", fdt_val64); if (status) goto fdt_set_fail; } } /* Shrink the FDT back to its minimum size: */ fdt_pack(fdt); return EFI_SUCCESS; fdt_set_fail: if (status == -FDT_ERR_NOSPACE) return EFI_BUFFER_TOO_SMALL; return EFI_LOAD_ERROR; } static efi_status_t exit_boot_func(struct efi_boot_memmap *map, void *priv) { struct exit_boot_struct *p = priv; p->boot_memmap = map; /* * Update the memory map with virtual addresses. The function will also * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME * entries so that we can pass it straight to SetVirtualAddressMap() */ efi_get_virtmap(map->map, map->map_size, map->desc_size, p->runtime_map, &p->runtime_entry_count); return update_fdt_memmap(p->new_fdt_addr, map); } /* * Allocate memory for a new FDT, then add EFI and commandline related fields * to the FDT. This routine increases the FDT allocation size until the * allocated memory is large enough. EFI allocations are in EFI_PAGE_SIZE * granules, which are fixed at 4K bytes, so in most cases the first allocation * should succeed. EFI boot services are exited at the end of this function. * There must be no allocations between the get_memory_map() call and the * exit_boot_services() call, so the exiting of boot services is very tightly * tied to the creation of the FDT with the final memory map in it. */ static efi_status_t allocate_new_fdt_and_exit_boot(void *handle, efi_loaded_image_t *image, unsigned long *new_fdt_addr, char *cmdline_ptr) { unsigned long desc_size; u32 desc_ver; efi_status_t status; struct exit_boot_struct priv = { 0 }; unsigned long fdt_addr = 0; unsigned long fdt_size = 0; if (!efi_novamap) { status = efi_alloc_virtmap(&priv.runtime_map, &desc_size, &desc_ver); if (status != EFI_SUCCESS) { efi_err("Unable to retrieve UEFI memory map.\n"); return status; } } /* * Unauthenticated device tree data is a security hazard, so ignore * 'dtb=' unless UEFI Secure Boot is disabled. We assume that secure * boot is enabled if we can't determine its state. */ bool config_efi_armstub_dtb_loader = false; #ifdef CONFIG_EFI_ARMSTUB_DTB_LOADER config_efi_armstub_dtb_loader = true; #endif print_efi_secureboot_mode(efi_get_secureboot()); if (!config_efi_armstub_dtb_loader || efi_get_secureboot() != efi_secureboot_mode_disabled) { if (strstr(cmdline_ptr, "dtb=")) efi_err("Ignoring DTB from command line.\n"); } else { efi_todo("Load DTB from command line\n"); // status = efi_load_dtb(image, &fdt_addr, &fdt_size); // if (status != EFI_SUCCESS && status != EFI_NOT_READY) { // efi_err("Failed to load device tree!\n"); // goto fail; // } } if (fdt_addr) { efi_info("Using DTB from command line\n"); } else { /* Look for a device tree configuration table entry. */ fdt_addr = (uintptr_t)get_fdt(&fdt_size); if (fdt_addr) efi_info("Using DTB from configuration table\n"); } if (!fdt_addr) efi_info("Generating empty DTB\n"); status = efi_allocate_pages(MAX_FDT_SIZE, new_fdt_addr, ULONG_MAX); if (status != EFI_SUCCESS) { efi_err("Unable to allocate memory for new device tree.\n"); goto fail; } efi_debug("New FDT address: 0x%lx\n", *new_fdt_addr); efi_info("Generating new FDT...\n"); status = update_fdt((void *)fdt_addr, fdt_size, (void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr); if (status != EFI_SUCCESS) { efi_err("Unable to construct new device tree.\n"); goto fail_free_new_fdt; } priv.new_fdt_addr = (void *)*new_fdt_addr; efi_info("Exiting boot services...\n"); status = efi_exit_boot_services(handle, &priv, exit_boot_func); if (status == EFI_SUCCESS) { efi_set_virtual_address_map_t *svam; if (efi_novamap) return EFI_SUCCESS; /* Install the new virtual address map */ svam = ST->RuntimeServices->SetVirtualAddressMap; status = svam(priv.runtime_entry_count * desc_size, desc_size, desc_ver, priv.runtime_map); /* * We are beyond the point of no return here, so if the call to * SetVirtualAddressMap() failed, we need to signal that to the * incoming kernel but proceed normally otherwise. */ if (status != EFI_SUCCESS) { efi_memory_desc_t *p; int l; /* * Set the virtual address field of all * EFI_MEMORY_RUNTIME entries to U64_MAX. This will * signal the incoming kernel that no virtual * translation has been installed. */ for (l = 0; l < priv.boot_memmap->map_size; l += priv.boot_memmap->desc_size) { p = (void *)priv.boot_memmap->map + l; if (p->Attribute & EFI_MEMORY_RUNTIME) p->VirtualStart = UINT64_MAX; } } return EFI_SUCCESS; } efi_err("Exit boot services failed.\n"); fail_free_new_fdt: efi_free(MAX_FDT_SIZE, *new_fdt_addr); fail: efi_free(fdt_size, fdt_addr); efi_bs_call(FreePool, priv.runtime_map); return EFI_LOAD_ERROR; } efi_status_t efi_boot_kernel(efi_handle_t handle, efi_loaded_image_t *loaded_image, struct payload_info *payload_info, char *cmdline_ptr) { unsigned long fdt_addr; efi_status_t status; efi_info("Loading ELF payload...\n"); // 加载ELF status = load_elf(payload_info); if (status != EFI_SUCCESS) { efi_err("Failed to load ELF payload, efi error code: %d\n", status); return status; } status = allocate_new_fdt_and_exit_boot(handle, loaded_image, &fdt_addr, cmdline_ptr); if (status != EFI_SUCCESS) { efi_err("Failed to update FDT and exit boot services\n"); return status; } #ifdef CONFIG_ARM efi_handle_post_ebs_state(); #endif efi_enter_kernel(payload_info, fdt_addr, fdt_totalsize((void *)fdt_addr)); /* not reached */ } void *get_fdt(unsigned long *fdt_size) { void *fdt; fdt = get_efi_config_table(DEVICE_TREE_GUID); if (!fdt) return NULL; if (fdt_check_header(fdt) != 0) { efi_err("Invalid header detected on UEFI supplied FDT, ignoring ...\n"); return NULL; } *fdt_size = fdt_totalsize(fdt); return fdt; }