use core::{ hash::{Hash, Hasher}, hint::spin_loop, intrinsics::{likely, unlikely}, mem::ManuallyDrop, sync::atomic::{compiler_fence, AtomicBool, AtomicI32, AtomicIsize, AtomicUsize, Ordering}, }; use alloc::{ string::{String, ToString}, sync::{Arc, Weak}, vec::Vec, }; use hashbrown::HashMap; use system_error::SystemError; use crate::{ arch::{ ipc::signal::{AtomicSignal, SigSet, Signal}, process::ArchPCBInfo, sched::sched, CurrentIrqArch, }, exception::InterruptArch, filesystem::{ procfs::procfs_unregister_pid, vfs::{file::FileDescriptorVec, FileType}, }, ipc::signal_types::{SigInfo, SigPending, SignalStruct}, kdebug, kinfo, libs::{ align::AlignedBox, casting::DowncastArc, futex::{ constant::{FutexFlag, FUTEX_BITSET_MATCH_ANY}, futex::Futex, }, lock_free_flags::LockFreeFlags, rwlock::{RwLock, RwLockReadGuard, RwLockUpgradableGuard, RwLockWriteGuard}, spinlock::{SpinLock, SpinLockGuard}, wait_queue::WaitQueue, }, mm::{percpu::PerCpuVar, set_INITIAL_PROCESS_ADDRESS_SPACE, ucontext::AddressSpace, VirtAddr}, net::socket::SocketInode, sched::{ completion::Completion, core::{sched_enqueue, CPU_EXECUTING}, SchedPolicy, SchedPriority, }, smp::kick_cpu, syscall::{user_access::clear_user, Syscall}, }; use self::kthread::WorkerPrivate; pub mod abi; pub mod c_adapter; pub mod exec; pub mod exit; pub mod fork; pub mod idle; pub mod kthread; pub mod pid; pub mod process; pub mod resource; pub mod syscall; /// 系统中所有进程的pcb static ALL_PROCESS: SpinLock>>> = SpinLock::new(None); pub static mut SWITCH_RESULT: Option> = None; /// 一个只改变1次的全局变量,标志进程管理器是否已经初始化完成 static mut __PROCESS_MANAGEMENT_INIT_DONE: bool = false; #[derive(Debug)] pub struct SwitchResult { pub prev_pcb: Option>, pub next_pcb: Option>, } impl SwitchResult { pub fn new() -> Self { Self { prev_pcb: None, next_pcb: None, } } } #[derive(Debug)] pub struct ProcessManager; impl ProcessManager { fn init() { static INIT_FLAG: AtomicBool = AtomicBool::new(false); if INIT_FLAG .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst) .is_err() { panic!("ProcessManager has been initialized!"); } unsafe { compiler_fence(Ordering::SeqCst); kdebug!("To create address space for INIT process."); // test_buddy(); set_INITIAL_PROCESS_ADDRESS_SPACE( AddressSpace::new(true).expect("Failed to create address space for INIT process."), ); kdebug!("INIT process address space created."); compiler_fence(Ordering::SeqCst); }; ALL_PROCESS.lock_irqsave().replace(HashMap::new()); Self::arch_init(); kdebug!("process arch init done."); Self::init_idle(); kdebug!("process idle init done."); unsafe { __PROCESS_MANAGEMENT_INIT_DONE = true }; kinfo!("Process Manager initialized."); } /// 判断进程管理器是否已经初始化完成 pub fn initialized() -> bool { unsafe { __PROCESS_MANAGEMENT_INIT_DONE } } /// 获取当前进程的pcb pub fn current_pcb() -> Arc { if unlikely(unsafe { !__PROCESS_MANAGEMENT_INIT_DONE }) { kerror!("unsafe__PROCESS_MANAGEMENT_INIT_DONE == false"); loop { spin_loop(); } } return ProcessControlBlock::arch_current_pcb(); } /// 增加当前进程的锁持有计数 #[inline(always)] pub fn preempt_disable() { if likely(unsafe { __PROCESS_MANAGEMENT_INIT_DONE }) { ProcessManager::current_pcb().preempt_disable(); } } /// 减少当前进程的锁持有计数 #[inline(always)] pub fn preempt_enable() { if likely(unsafe { __PROCESS_MANAGEMENT_INIT_DONE }) { ProcessManager::current_pcb().preempt_enable(); } } /// 根据pid获取进程的pcb /// /// ## 参数 /// /// - `pid` : 进程的pid /// /// ## 返回值 /// /// 如果找到了对应的进程,那么返回该进程的pcb,否则返回None pub fn find(pid: Pid) -> Option> { return ALL_PROCESS.lock_irqsave().as_ref()?.get(&pid).cloned(); } /// 向系统中添加一个进程的pcb /// /// ## 参数 /// /// - `pcb` : 进程的pcb /// /// ## 返回值 /// /// 无 pub fn add_pcb(pcb: Arc) { ALL_PROCESS .lock_irqsave() .as_mut() .unwrap() .insert(pcb.pid(), pcb.clone()); } /// 唤醒一个进程 pub fn wakeup(pcb: &Arc) -> Result<(), SystemError> { let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() }; let state = pcb.sched_info().inner_lock_read_irqsave().state(); if state.is_blocked() { let mut writer = pcb.sched_info().inner_lock_write_irqsave(); let state = writer.state(); if state.is_blocked() { writer.set_state(ProcessState::Runnable); // avoid deadlock drop(writer); sched_enqueue(pcb.clone(), true); return Ok(()); } else if state.is_exited() { return Err(SystemError::EINVAL); } else { return Ok(()); } } else if state.is_exited() { return Err(SystemError::EINVAL); } else { return Ok(()); } } /// 唤醒暂停的进程 pub fn wakeup_stop(pcb: &Arc) -> Result<(), SystemError> { let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() }; let state = pcb.sched_info().inner_lock_read_irqsave().state(); if let ProcessState::Stopped = state { let mut writer = pcb.sched_info().inner_lock_write_irqsave(); let state = writer.state(); if let ProcessState::Stopped = state { writer.set_state(ProcessState::Runnable); // avoid deadlock drop(writer); sched_enqueue(pcb.clone(), true); return Ok(()); } else if state.is_runnable() { return Ok(()); } else { return Err(SystemError::EINVAL); } } else if state.is_runnable() { return Ok(()); } else { return Err(SystemError::EINVAL); } } /// 标志当前进程永久睡眠,但是发起调度的工作,应该由调用者完成 /// /// ## 注意 /// /// - 进入当前函数之前,不能持有sched_info的锁 /// - 进入当前函数之前,必须关闭中断 /// - 进入当前函数之后必须保证逻辑的正确性,避免被重复加入调度队列 pub fn mark_sleep(interruptable: bool) -> Result<(), SystemError> { assert_eq!( CurrentIrqArch::is_irq_enabled(), false, "interrupt must be disabled before enter ProcessManager::mark_sleep()" ); let pcb = ProcessManager::current_pcb(); let mut writer = pcb.sched_info().inner_lock_write_irqsave(); if !matches!(writer.state(), ProcessState::Exited(_)) { writer.set_state(ProcessState::Blocked(interruptable)); pcb.flags().insert(ProcessFlags::NEED_SCHEDULE); drop(writer); return Ok(()); } return Err(SystemError::EINTR); } /// 标志当前进程为停止状态,但是发起调度的工作,应该由调用者完成 /// /// ## 注意 /// /// - 进入当前函数之前,不能持有sched_info的锁 /// - 进入当前函数之前,必须关闭中断 pub fn mark_stop() -> Result<(), SystemError> { assert_eq!( CurrentIrqArch::is_irq_enabled(), false, "interrupt must be disabled before enter ProcessManager::mark_stop()" ); let pcb = ProcessManager::current_pcb(); let mut writer = pcb.sched_info().inner_lock_write_irqsave(); if !matches!(writer.state(), ProcessState::Exited(_)) { writer.set_state(ProcessState::Stopped); pcb.flags().insert(ProcessFlags::NEED_SCHEDULE); drop(writer); return Ok(()); } return Err(SystemError::EINTR); } /// 当子进程退出后向父进程发送通知 fn exit_notify() { let current = ProcessManager::current_pcb(); // 让INIT进程收养所有子进程 if current.pid() != Pid(1) { unsafe { current .adopt_childen() .unwrap_or_else(|e| panic!("adopte_childen failed: error: {e:?}")) }; let r = current.parent_pcb.read().upgrade(); if r.is_none() { return; } let parent_pcb = r.unwrap(); let r = Syscall::kill(parent_pcb.pid(), Signal::SIGCHLD as i32); if r.is_err() { kwarn!( "failed to send kill signal to {:?}'s parent pcb {:?}", current.pid(), parent_pcb.pid() ); } // todo: 这里需要向父进程发送SIGCHLD信号 // todo: 这里还需要根据线程组的信息,决定信号的发送 } } /// 退出当前进程 /// /// ## 参数 /// /// - `exit_code` : 进程的退出码 pub fn exit(exit_code: usize) -> ! { // 关中断 unsafe { CurrentIrqArch::interrupt_disable() }; let pcb = ProcessManager::current_pcb(); pcb.sched_info .inner_lock_write_irqsave() .set_state(ProcessState::Exited(exit_code)); pcb.wait_queue.wakeup(Some(ProcessState::Blocked(true))); // 进行进程退出后的工作 let thread = pcb.thread.write(); if let Some(addr) = thread.set_child_tid { unsafe { clear_user(addr, core::mem::size_of::()).expect("clear tid failed") }; } if let Some(addr) = thread.clear_child_tid { if Arc::strong_count(&pcb.basic().user_vm().expect("User VM Not found")) > 1 { let _ = Futex::futex_wake(addr, FutexFlag::FLAGS_MATCH_NONE, 1, FUTEX_BITSET_MATCH_ANY); } unsafe { clear_user(addr, core::mem::size_of::()).expect("clear tid failed") }; } // 如果是vfork出来的进程,则需要处理completion if thread.vfork_done.is_some() { thread.vfork_done.as_ref().unwrap().complete_all(); } drop(thread); unsafe { pcb.basic_mut().set_user_vm(None) }; drop(pcb); ProcessManager::exit_notify(); unsafe { CurrentIrqArch::interrupt_enable() }; sched(); loop {} } pub unsafe fn release(pid: Pid) { let pcb = ProcessManager::find(pid); if !pcb.is_none() { // let pcb = pcb.unwrap(); // 判断该pcb是否在全局没有任何引用 // TODO: 当前,pcb的Arc指针存在泄露问题,引用计数不正确,打算在接下来实现debug专用的Arc,方便调试,然后解决这个bug。 // 因此目前暂时注释掉,使得能跑 // if Arc::strong_count(&pcb) <= 2 { // drop(pcb); // ALL_PROCESS.lock().as_mut().unwrap().remove(&pid); // } else { // // 如果不为1就panic // let msg = format!("pcb '{:?}' is still referenced, strong count={}",pcb.pid(), Arc::strong_count(&pcb)); // kerror!("{}", msg); // panic!() // } ALL_PROCESS.lock_irqsave().as_mut().unwrap().remove(&pid); } } /// 上下文切换完成后的钩子函数 unsafe fn switch_finish_hook() { // kdebug!("switch_finish_hook"); let prev_pcb = SWITCH_RESULT .as_mut() .unwrap() .get_mut() .prev_pcb .take() .expect("prev_pcb is None"); let next_pcb = SWITCH_RESULT .as_mut() .unwrap() .get_mut() .next_pcb .take() .expect("next_pcb is None"); // 由于进程切换前使用了SpinLockGuard::leak(),所以这里需要手动释放锁 prev_pcb.arch_info.force_unlock(); next_pcb.arch_info.force_unlock(); } /// 如果目标进程正在目标CPU上运行,那么就让这个cpu陷入内核态 /// /// ## 参数 /// /// - `pcb` : 进程的pcb #[allow(dead_code)] pub fn kick(pcb: &Arc) { ProcessManager::current_pcb().preempt_disable(); let cpu_id = pcb.sched_info().on_cpu(); if let Some(cpu_id) = cpu_id { let cpu_id = cpu_id; if pcb.pid() == CPU_EXECUTING.get(cpu_id) { kick_cpu(cpu_id).expect("ProcessManager::kick(): Failed to kick cpu"); } } ProcessManager::current_pcb().preempt_enable(); } } /// 上下文切换的钩子函数,当这个函数return的时候,将会发生上下文切换 #[cfg(target_arch = "x86_64")] pub unsafe extern "sysv64" fn switch_finish_hook() { ProcessManager::switch_finish_hook(); } #[cfg(target_arch = "riscv64")] pub unsafe extern "C" fn switch_finish_hook() { ProcessManager::switch_finish_hook(); } int_like!(Pid, AtomicPid, usize, AtomicUsize); impl Hash for Pid { fn hash(&self, state: &mut H) { self.0.hash(state); } } impl Pid { pub fn to_string(&self) -> String { self.0.to_string() } } #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub enum ProcessState { /// The process is running on a CPU or in a run queue. Runnable, /// The process is waiting for an event to occur. /// 其中的bool表示该等待过程是否可以被打断。 /// - 如果该bool为true,那么,硬件中断/信号/其他系统事件都可以打断该等待过程,使得该进程重新进入Runnable状态。 /// - 如果该bool为false,那么,这个进程必须被显式的唤醒,才能重新进入Runnable状态。 Blocked(bool), /// 进程被信号终止 Stopped, /// 进程已经退出,usize表示进程的退出码 Exited(usize), } #[allow(dead_code)] impl ProcessState { #[inline(always)] pub fn is_runnable(&self) -> bool { return matches!(self, ProcessState::Runnable); } #[inline(always)] pub fn is_blocked(&self) -> bool { return matches!(self, ProcessState::Blocked(_)); } #[inline(always)] pub fn is_blocked_interruptable(&self) -> bool { return matches!(self, ProcessState::Blocked(true)); } /// Returns `true` if the process state is [`Exited`]. #[inline(always)] pub fn is_exited(&self) -> bool { return matches!(self, ProcessState::Exited(_)); } /// Returns `true` if the process state is [`Stopped`]. /// /// [`Stopped`]: ProcessState::Stopped #[inline(always)] pub fn is_stopped(&self) -> bool { matches!(self, ProcessState::Stopped) } /// Returns exit code if the process state is [`Exited`]. #[inline(always)] pub fn exit_code(&self) -> Option { match self { ProcessState::Exited(code) => Some(*code), _ => None, } } } bitflags! { /// pcb的标志位 pub struct ProcessFlags: usize { /// 当前pcb表示一个内核线程 const KTHREAD = 1 << 0; /// 当前进程需要被调度 const NEED_SCHEDULE = 1 << 1; /// 进程由于vfork而与父进程存在资源共享 const VFORK = 1 << 2; /// 进程不可被冻结 const NOFREEZE = 1 << 3; /// 进程正在退出 const EXITING = 1 << 4; /// 进程由于接收到终止信号唤醒 const WAKEKILL = 1 << 5; /// 进程由于接收到信号而退出.(Killed by a signal) const SIGNALED = 1 << 6; /// 进程需要迁移到其他cpu上 const NEED_MIGRATE = 1 << 7; } } #[derive(Debug)] pub struct ProcessControlBlock { /// 当前进程的pid pid: Pid, /// 当前进程的线程组id(这个值在同一个线程组内永远不变) tgid: Pid, basic: RwLock, /// 当前进程的自旋锁持有计数 preempt_count: AtomicUsize, flags: LockFreeFlags, worker_private: SpinLock>, /// 进程的内核栈 kernel_stack: RwLock, /// 系统调用栈 syscall_stack: RwLock, /// 与调度相关的信息 sched_info: ProcessSchedulerInfo, /// 与处理器架构相关的信息 arch_info: SpinLock, /// 与信号处理相关的信息(似乎可以是无锁的) sig_info: RwLock, /// 信号处理结构体 sig_struct: SpinLock, /// 退出信号S exit_signal: AtomicSignal, /// 父进程指针 parent_pcb: RwLock>, /// 真实父进程指针 real_parent_pcb: RwLock>, /// 子进程链表 children: RwLock>, /// 等待队列 wait_queue: WaitQueue, /// 线程信息 thread: RwLock, } impl ProcessControlBlock { /// Generate a new pcb. /// /// ## 参数 /// /// - `name` : 进程的名字 /// - `kstack` : 进程的内核栈 /// /// ## 返回值 /// /// 返回一个新的pcb pub fn new(name: String, kstack: KernelStack) -> Arc { return Self::do_create_pcb(name, kstack, false); } /// 创建一个新的idle进程 /// /// 请注意,这个函数只能在进程管理初始化的时候调用。 pub fn new_idle(cpu_id: u32, kstack: KernelStack) -> Arc { let name = format!("idle-{}", cpu_id); return Self::do_create_pcb(name, kstack, true); } #[inline(never)] fn do_create_pcb(name: String, kstack: KernelStack, is_idle: bool) -> Arc { let (pid, ppid, cwd) = if is_idle { (Pid(0), Pid(0), "/".to_string()) } else { let ppid = ProcessManager::current_pcb().pid(); let cwd = ProcessManager::current_pcb().basic().cwd(); (Self::generate_pid(), ppid, cwd) }; let basic_info = ProcessBasicInfo::new(Pid(0), ppid, name, cwd, None); let preempt_count = AtomicUsize::new(0); let flags = unsafe { LockFreeFlags::new(ProcessFlags::empty()) }; let sched_info = ProcessSchedulerInfo::new(None); let arch_info = SpinLock::new(ArchPCBInfo::new(&kstack)); let ppcb: Weak = ProcessManager::find(ppid) .map(|p| Arc::downgrade(&p)) .unwrap_or_else(|| Weak::new()); let pcb = Self { pid, tgid: pid, basic: basic_info, preempt_count, flags, kernel_stack: RwLock::new(kstack), syscall_stack: RwLock::new(KernelStack::new().unwrap()), worker_private: SpinLock::new(None), sched_info, arch_info, sig_info: RwLock::new(ProcessSignalInfo::default()), sig_struct: SpinLock::new(SignalStruct::new()), exit_signal: AtomicSignal::new(Signal::SIGCHLD), parent_pcb: RwLock::new(ppcb.clone()), real_parent_pcb: RwLock::new(ppcb), children: RwLock::new(Vec::new()), wait_queue: WaitQueue::INIT, thread: RwLock::new(ThreadInfo::new()), }; // 初始化系统调用栈 #[cfg(target_arch = "x86_64")] pcb.arch_info .lock() .init_syscall_stack(&pcb.syscall_stack.read()); let pcb = Arc::new(pcb); // 设置进程的arc指针到内核栈和系统调用栈的最低地址处 unsafe { pcb.kernel_stack .write() .set_pcb(Arc::downgrade(&pcb)) .unwrap(); pcb.syscall_stack .write() .set_pcb(Arc::downgrade(&pcb)) .unwrap() }; // 将当前pcb加入父进程的子进程哈希表中 if pcb.pid() > Pid(1) { if let Some(ppcb_arc) = pcb.parent_pcb.read().upgrade() { let mut children = ppcb_arc.children.write_irqsave(); children.push(pcb.pid()); } else { panic!("parent pcb is None"); } } return pcb; } /// 生成一个新的pid #[inline(always)] fn generate_pid() -> Pid { static NEXT_PID: AtomicPid = AtomicPid::new(Pid(1)); return NEXT_PID.fetch_add(Pid(1), Ordering::SeqCst); } /// 返回当前进程的锁持有计数 #[inline(always)] pub fn preempt_count(&self) -> usize { return self.preempt_count.load(Ordering::SeqCst); } /// 增加当前进程的锁持有计数 #[inline(always)] pub fn preempt_disable(&self) { self.preempt_count.fetch_add(1, Ordering::SeqCst); } /// 减少当前进程的锁持有计数 #[inline(always)] pub fn preempt_enable(&self) { self.preempt_count.fetch_sub(1, Ordering::SeqCst); } #[inline(always)] pub unsafe fn set_preempt_count(&self, count: usize) { self.preempt_count.store(count, Ordering::SeqCst); } #[inline(always)] pub fn flags(&self) -> &mut ProcessFlags { return self.flags.get_mut(); } /// 请注意,这个值能在中断上下文中读取,但不能被中断上下文修改 /// 否则会导致死锁 #[inline(always)] pub fn basic(&self) -> RwLockReadGuard { return self.basic.read(); } #[inline(always)] pub fn set_name(&self, name: String) { self.basic.write().set_name(name); } #[inline(always)] pub fn basic_mut(&self) -> RwLockWriteGuard { return self.basic.write_irqsave(); } /// # 获取arch info的锁,同时关闭中断 #[inline(always)] pub fn arch_info_irqsave(&self) -> SpinLockGuard { return self.arch_info.lock_irqsave(); } /// # 获取arch info的锁,但是不关闭中断 /// /// 由于arch info在进程切换的时候会使用到, /// 因此在中断上下文外,获取arch info 而不irqsave是不安全的. /// /// 只能在以下情况下使用这个函数: /// - 在中断上下文中(中断已经禁用),获取arch info的锁。 /// - 刚刚创建新的pcb #[inline(always)] pub unsafe fn arch_info(&self) -> SpinLockGuard { return self.arch_info.lock(); } #[inline(always)] pub fn kernel_stack(&self) -> RwLockReadGuard { return self.kernel_stack.read(); } #[inline(always)] #[allow(dead_code)] pub fn kernel_stack_mut(&self) -> RwLockWriteGuard { return self.kernel_stack.write(); } #[inline(always)] pub fn sched_info(&self) -> &ProcessSchedulerInfo { return &self.sched_info; } #[inline(always)] pub fn worker_private(&self) -> SpinLockGuard> { return self.worker_private.lock(); } #[inline(always)] pub fn pid(&self) -> Pid { return self.pid; } #[inline(always)] pub fn tgid(&self) -> Pid { return self.tgid; } /// 获取文件描述符表的Arc指针 #[inline(always)] pub fn fd_table(&self) -> Arc> { return self.basic.read().fd_table().unwrap(); } /// 根据文件描述符序号,获取socket对象的Arc指针 /// /// ## 参数 /// /// - `fd` 文件描述符序号 /// /// ## 返回值 /// /// Option(&mut Box) socket对象的可变引用. 如果文件描述符不是socket,那么返回None pub fn get_socket(&self, fd: i32) -> Option> { let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.read(); let f = fd_table_guard.get_file_by_fd(fd)?; drop(fd_table_guard); let guard = f.lock(); if guard.file_type() != FileType::Socket { return None; } let socket: Arc = guard .inode() .downcast_arc::() .expect("Not a socket inode"); return Some(socket); } /// 当前进程退出时,让初始进程收养所有子进程 unsafe fn adopt_childen(&self) -> Result<(), SystemError> { match ProcessManager::find(Pid(1)) { Some(init_pcb) => { let childen_guard = self.children.write(); let mut init_childen_guard = init_pcb.children.write(); childen_guard.iter().for_each(|pid| { init_childen_guard.push(*pid); }); return Ok(()); } _ => Err(SystemError::ECHILD), } } /// 生成进程的名字 pub fn generate_name(program_path: &str, args: &Vec) -> String { let mut name = program_path.to_string(); for arg in args { name.push_str(arg); name.push(' '); } return name; } pub fn sig_info(&self) -> RwLockReadGuard { self.sig_info.read() } pub fn sig_info_irqsave(&self) -> RwLockReadGuard { self.sig_info.read_irqsave() } pub fn try_siginfo(&self, times: u8) -> Option> { for _ in 0..times { if let Some(r) = self.sig_info.try_read() { return Some(r); } } return None; } pub fn sig_info_mut(&self) -> RwLockWriteGuard { self.sig_info.write_irqsave() } pub fn try_siginfo_mut(&self, times: u8) -> Option> { for _ in 0..times { if let Some(r) = self.sig_info.try_write() { return Some(r); } } return None; } pub fn sig_struct(&self) -> SpinLockGuard { self.sig_struct.lock() } pub fn try_sig_struct_irq(&self, times: u8) -> Option> { for _ in 0..times { if let Ok(r) = self.sig_struct.try_lock_irqsave() { return Some(r); } } return None; } pub fn sig_struct_irqsave(&self) -> SpinLockGuard { self.sig_struct.lock_irqsave() } } impl Drop for ProcessControlBlock { fn drop(&mut self) { // 在ProcFS中,解除进程的注册 procfs_unregister_pid(self.pid()) .unwrap_or_else(|e| panic!("procfs_unregister_pid failed: error: {e:?}")); if let Some(ppcb) = self.parent_pcb.read().upgrade() { ppcb.children.write().retain(|pid| *pid != self.pid()); } } } /// 线程信息 #[derive(Debug)] pub struct ThreadInfo { // 来自用户空间记录用户线程id的地址,在该线程结束时将该地址置0以通知父进程 clear_child_tid: Option, set_child_tid: Option, vfork_done: Option>, /// 线程组的组长 group_leader: Weak, } impl ThreadInfo { pub fn new() -> Self { Self { clear_child_tid: None, set_child_tid: None, vfork_done: None, group_leader: Weak::default(), } } pub fn group_leader(&self) -> Option> { return self.group_leader.upgrade(); } } /// 进程的基本信息 /// /// 这个结构体保存进程的基本信息,主要是那些不会随着进程的运行而经常改变的信息。 #[derive(Debug)] pub struct ProcessBasicInfo { /// 当前进程的进程组id pgid: Pid, /// 当前进程的父进程的pid ppid: Pid, /// 进程的名字 name: String, /// 当前进程的工作目录 cwd: String, /// 用户地址空间 user_vm: Option>, /// 文件描述符表 fd_table: Option>>, } impl ProcessBasicInfo { #[inline(never)] pub fn new( pgid: Pid, ppid: Pid, name: String, cwd: String, user_vm: Option>, ) -> RwLock { let fd_table = Arc::new(RwLock::new(FileDescriptorVec::new())); return RwLock::new(Self { pgid, ppid, name, cwd, user_vm, fd_table: Some(fd_table), }); } pub fn pgid(&self) -> Pid { return self.pgid; } pub fn ppid(&self) -> Pid { return self.ppid; } pub fn name(&self) -> &str { return &self.name; } pub fn set_name(&mut self, name: String) { self.name = name; } pub fn cwd(&self) -> String { return self.cwd.clone(); } pub fn set_cwd(&mut self, path: String) { return self.cwd = path; } pub fn user_vm(&self) -> Option> { return self.user_vm.clone(); } pub unsafe fn set_user_vm(&mut self, user_vm: Option>) { self.user_vm = user_vm; } pub fn fd_table(&self) -> Option>> { return self.fd_table.clone(); } pub fn set_fd_table(&mut self, fd_table: Option>>) { self.fd_table = fd_table; } } #[derive(Debug)] pub struct ProcessSchedulerInfo { /// 当前进程所在的cpu on_cpu: AtomicI32, /// 如果当前进程等待被迁移到另一个cpu核心上(也就是flags中的PF_NEED_MIGRATE被置位), /// 该字段存储要被迁移到的目标处理器核心号 migrate_to: AtomicI32, inner_locked: RwLock, /// 进程的调度优先级 priority: SchedPriority, /// 当前进程的虚拟运行时间 virtual_runtime: AtomicIsize, /// 由实时调度器管理的时间片 rt_time_slice: AtomicIsize, } #[derive(Debug)] pub struct InnerSchedInfo { /// 当前进程的状态 state: ProcessState, /// 进程的调度策略 sched_policy: SchedPolicy, } impl InnerSchedInfo { pub fn state(&self) -> ProcessState { return self.state; } pub fn set_state(&mut self, state: ProcessState) { self.state = state; } pub fn policy(&self) -> SchedPolicy { return self.sched_policy; } } impl ProcessSchedulerInfo { #[inline(never)] pub fn new(on_cpu: Option) -> Self { let cpu_id = match on_cpu { Some(cpu_id) => cpu_id as i32, None => -1, }; return Self { on_cpu: AtomicI32::new(cpu_id), migrate_to: AtomicI32::new(-1), inner_locked: RwLock::new(InnerSchedInfo { state: ProcessState::Blocked(false), sched_policy: SchedPolicy::CFS, }), virtual_runtime: AtomicIsize::new(0), rt_time_slice: AtomicIsize::new(0), priority: SchedPriority::new(100).unwrap(), }; } pub fn on_cpu(&self) -> Option { let on_cpu = self.on_cpu.load(Ordering::SeqCst); if on_cpu == -1 { return None; } else { return Some(on_cpu as u32); } } pub fn set_on_cpu(&self, on_cpu: Option) { if let Some(cpu_id) = on_cpu { self.on_cpu.store(cpu_id as i32, Ordering::SeqCst); } else { self.on_cpu.store(-1, Ordering::SeqCst); } } pub fn migrate_to(&self) -> Option { let migrate_to = self.migrate_to.load(Ordering::SeqCst); if migrate_to == -1 { return None; } else { return Some(migrate_to as u32); } } pub fn set_migrate_to(&self, migrate_to: Option) { if let Some(data) = migrate_to { self.migrate_to.store(data as i32, Ordering::SeqCst); } else { self.migrate_to.store(-1, Ordering::SeqCst) } } pub fn inner_lock_write_irqsave(&self) -> RwLockWriteGuard { return self.inner_locked.write_irqsave(); } pub fn inner_lock_read_irqsave(&self) -> RwLockReadGuard { return self.inner_locked.read_irqsave(); } pub fn inner_lock_try_read_irqsave( &self, times: u8, ) -> Option> { for _ in 0..times { if let Some(r) = self.inner_locked.try_read_irqsave() { return Some(r); } } return None; } pub fn inner_lock_try_upgradable_read_irqsave( &self, times: u8, ) -> Option> { for _ in 0..times { if let Some(r) = self.inner_locked.try_upgradeable_read_irqsave() { return Some(r); } } return None; } pub fn virtual_runtime(&self) -> isize { return self.virtual_runtime.load(Ordering::SeqCst); } pub fn set_virtual_runtime(&self, virtual_runtime: isize) { self.virtual_runtime .store(virtual_runtime, Ordering::SeqCst); } pub fn increase_virtual_runtime(&self, delta: isize) { self.virtual_runtime.fetch_add(delta, Ordering::SeqCst); } pub fn rt_time_slice(&self) -> isize { return self.rt_time_slice.load(Ordering::SeqCst); } pub fn set_rt_time_slice(&self, rt_time_slice: isize) { self.rt_time_slice.store(rt_time_slice, Ordering::SeqCst); } pub fn increase_rt_time_slice(&self, delta: isize) { self.rt_time_slice.fetch_add(delta, Ordering::SeqCst); } pub fn priority(&self) -> SchedPriority { return self.priority; } } #[derive(Debug, Clone)] pub struct KernelStack { stack: Option>, /// 标记该内核栈是否可以被释放 can_be_freed: bool, } impl KernelStack { pub const SIZE: usize = 0x4000; pub const ALIGN: usize = 0x4000; pub fn new() -> Result { return Ok(Self { stack: Some( AlignedBox::<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>::new_zeroed()?, ), can_be_freed: true, }); } /// 根据已有的空间,构造一个内核栈结构体 /// /// 仅仅用于BSP启动时,为idle进程构造内核栈。其他时候使用这个函数,很可能造成错误! pub unsafe fn from_existed(base: VirtAddr) -> Result { if base.is_null() || base.check_aligned(Self::ALIGN) == false { return Err(SystemError::EFAULT); } return Ok(Self { stack: Some( AlignedBox::<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>::new_unchecked( base.data() as *mut [u8; KernelStack::SIZE], ), ), can_be_freed: false, }); } /// 返回内核栈的起始虚拟地址(低地址) pub fn start_address(&self) -> VirtAddr { return VirtAddr::new(self.stack.as_ref().unwrap().as_ptr() as usize); } /// 返回内核栈的结束虚拟地址(高地址)(不包含该地址) pub fn stack_max_address(&self) -> VirtAddr { return VirtAddr::new(self.stack.as_ref().unwrap().as_ptr() as usize + Self::SIZE); } pub unsafe fn set_pcb(&mut self, pcb: Weak) -> Result<(), SystemError> { // 将一个Weak放到内核栈的最低地址处 let p: *const ProcessControlBlock = Weak::into_raw(pcb); let stack_bottom_ptr = self.start_address().data() as *mut *const ProcessControlBlock; // 如果内核栈的最低地址处已经有了一个pcb,那么,这里就不再设置,直接返回错误 if unlikely(unsafe { !(*stack_bottom_ptr).is_null() }) { kerror!("kernel stack bottom is not null: {:p}", *stack_bottom_ptr); return Err(SystemError::EPERM); } // 将pcb的地址放到内核栈的最低地址处 unsafe { *stack_bottom_ptr = p; } return Ok(()); } /// 清除内核栈的pcb指针 /// /// ## 参数 /// /// - `force` : 如果为true,那么,即使该内核栈的pcb指针不为null,也会被强制清除而不处理Weak指针问题 pub unsafe fn clear_pcb(&mut self, force: bool) { let stack_bottom_ptr = self.start_address().data() as *mut *const ProcessControlBlock; if unlikely(unsafe { (*stack_bottom_ptr).is_null() }) { return; } if !force { let pcb_ptr: Weak = Weak::from_raw(*stack_bottom_ptr); drop(pcb_ptr); } *stack_bottom_ptr = core::ptr::null(); } /// 返回指向当前内核栈pcb的Arc指针 #[allow(dead_code)] pub unsafe fn pcb(&self) -> Option> { // 从内核栈的最低地址处取出pcb的地址 let p = self.stack.as_ref().unwrap().as_ptr() as *const *const ProcessControlBlock; if unlikely(unsafe { (*p).is_null() }) { return None; } // 为了防止内核栈的pcb指针被释放,这里需要将其包装一下,使得Arc的drop不会被调用 let weak_wrapper: ManuallyDrop> = ManuallyDrop::new(Weak::from_raw(*p)); let new_arc: Arc = weak_wrapper.upgrade()?; return Some(new_arc); } } impl Drop for KernelStack { fn drop(&mut self) { if !self.stack.is_none() { let ptr = self.stack.as_ref().unwrap().as_ptr() as *const *const ProcessControlBlock; if unsafe { !(*ptr).is_null() } { let pcb_ptr: Weak = unsafe { Weak::from_raw(*ptr) }; drop(pcb_ptr); } } // 如果该内核栈不可以被释放,那么,这里就forget,不调用AlignedBox的drop函数 if !self.can_be_freed { let bx = self.stack.take(); core::mem::forget(bx); } } } pub fn process_init() { ProcessManager::init(); } #[derive(Debug)] pub struct ProcessSignalInfo { // 当前进程 sig_block: SigSet, // sig_pending 中存储当前线程要处理的信号 sig_pending: SigPending, // sig_shared_pending 中存储当前线程所属进程要处理的信号 sig_shared_pending: SigPending, } impl ProcessSignalInfo { pub fn sig_block(&self) -> &SigSet { &self.sig_block } pub fn sig_pending(&self) -> &SigPending { &self.sig_pending } pub fn sig_pending_mut(&mut self) -> &mut SigPending { &mut self.sig_pending } pub fn sig_block_mut(&mut self) -> &mut SigSet { &mut self.sig_block } pub fn sig_shared_pending_mut(&mut self) -> &mut SigPending { &mut self.sig_shared_pending } pub fn sig_shared_pending(&self) -> &SigPending { &self.sig_shared_pending } /// 从 pcb 的 siginfo中取出下一个要处理的信号,先处理线程信号,再处理进程信号 /// /// ## 参数 /// /// - `sig_mask` 被忽略掉的信号 /// pub fn dequeue_signal(&mut self, sig_mask: &SigSet) -> (Signal, Option) { let res = self.sig_pending.dequeue_signal(sig_mask); if res.0 != Signal::INVALID { return res; } else { return self.sig_shared_pending.dequeue_signal(sig_mask); } } } impl Default for ProcessSignalInfo { fn default() -> Self { Self { sig_block: SigSet::empty(), sig_pending: SigPending::default(), sig_shared_pending: SigPending::default(), } } }