use alloc::{ string::{String, ToString}, sync::Arc, vec::Vec, }; use crate::{ driver::base::block::SeekFrom, filesystem::vfs::file::FileDescriptorVec, include::bindings::bindings::{verify_area, AT_REMOVEDIR, PAGE_4K_SIZE, PROC_MAX_FD_NUM}, kerror, libs::rwlock::RwLockWriteGuard, mm::VirtAddr, process::ProcessManager, syscall::{Syscall, SystemError}, time::TimeSpec, }; use super::{ core::{do_mkdir, do_remove_dir, do_unlink_at}, fcntl::{FcntlCommand, FD_CLOEXEC}, file::{File, FileMode}, utils::rsplit_path, Dirent, FileType, IndexNode, ROOT_INODE, }; pub const SEEK_SET: u32 = 0; pub const SEEK_CUR: u32 = 1; pub const SEEK_END: u32 = 2; pub const SEEK_MAX: u32 = 3; bitflags! { /// 文件类型和权限 #[repr(C)] pub struct ModeType: u32 { /// 掩码 const S_IFMT = 0o0_170_000; /// 文件类型 const S_IFSOCK = 0o140000; const S_IFLNK = 0o120000; const S_IFREG = 0o100000; const S_IFBLK = 0o060000; const S_IFDIR = 0o040000; const S_IFCHR = 0o020000; const S_IFIFO = 0o010000; const S_ISUID = 0o004000; const S_ISGID = 0o002000; const S_ISVTX = 0o001000; /// 文件用户权限 const S_IRWXU = 0o0700; const S_IRUSR = 0o0400; const S_IWUSR = 0o0200; const S_IXUSR = 0o0100; /// 文件组权限 const S_IRWXG = 0o0070; const S_IRGRP = 0o0040; const S_IWGRP = 0o0020; const S_IXGRP = 0o0010; /// 文件其他用户权限 const S_IRWXO = 0o0007; const S_IROTH = 0o0004; const S_IWOTH = 0o0002; const S_IXOTH = 0o0001; } } #[repr(C)] /// # 文件信息结构体 pub struct PosixKstat { /// 硬件设备ID dev_id: u64, /// inode号 inode: u64, /// 硬链接数 nlink: u64, /// 文件权限 mode: ModeType, /// 所有者用户ID uid: i32, /// 所有者组ID gid: i32, /// 设备ID rdev: i64, /// 文件大小 size: i64, /// 文件系统块大小 blcok_size: i64, /// 分配的512B块数 blocks: u64, /// 最后访问时间 atime: TimeSpec, /// 最后修改时间 mtime: TimeSpec, /// 最后状态变化时间 ctime: TimeSpec, /// 用于填充结构体大小的空白数据 pub _pad: [i8; 24], } impl PosixKstat { fn new() -> Self { Self { inode: 0, dev_id: 0, mode: ModeType { bits: 0 }, nlink: 0, uid: 0, gid: 0, rdev: 0, size: 0, atime: TimeSpec { tv_sec: 0, tv_nsec: 0, }, mtime: TimeSpec { tv_sec: 0, tv_nsec: 0, }, ctime: TimeSpec { tv_sec: 0, tv_nsec: 0, }, blcok_size: 0, blocks: 0, _pad: Default::default(), } } } impl Syscall { /// @brief 为当前进程打开一个文件 /// /// @param path 文件路径 /// @param o_flags 打开文件的标志位 /// /// @return 文件描述符编号,或者是错误码 pub fn open(path: &str, mode: FileMode) -> Result { // kdebug!("open: path: {}, mode: {:?}", path, mode); // 文件名过长 if path.len() > PAGE_4K_SIZE as usize { return Err(SystemError::ENAMETOOLONG); } let inode: Result, SystemError> = ROOT_INODE().lookup(path); let inode: Arc = if inode.is_err() { let errno = inode.unwrap_err(); // 文件不存在,且需要创建 if mode.contains(FileMode::O_CREAT) && !mode.contains(FileMode::O_DIRECTORY) && errno == SystemError::ENOENT { let (filename, parent_path) = rsplit_path(path); // 查找父目录 let parent_inode: Arc = ROOT_INODE().lookup(parent_path.unwrap_or("/"))?; // 创建文件 let inode: Arc = parent_inode.create( filename, FileType::File, ModeType::from_bits_truncate(0o755), )?; inode } else { // 不需要创建文件,因此返回错误码 return Err(errno); } } else { inode.unwrap() }; let file_type: FileType = inode.metadata()?.file_type; // 如果要打开的是文件夹,而目标不是文件夹 if mode.contains(FileMode::O_DIRECTORY) && file_type != FileType::Dir { return Err(SystemError::ENOTDIR); } // 如果O_TRUNC,并且,打开模式包含O_RDWR或O_WRONLY,清空文件 if mode.contains(FileMode::O_TRUNC) && (mode.contains(FileMode::O_RDWR) || mode.contains(FileMode::O_WRONLY)) && file_type == FileType::File { inode.truncate(0)?; } // 创建文件对象 let mut file: File = File::new(inode, mode)?; // 打开模式为“追加” if mode.contains(FileMode::O_APPEND) { file.lseek(SeekFrom::SeekEnd(0))?; } // 把文件对象存入pcb let r = ProcessManager::current_pcb() .fd_table() .write() .alloc_fd(file, None) .map(|fd| fd as usize); return r; } /// @brief 关闭文件 /// /// @param fd 文件描述符编号 /// /// @return 成功返回0,失败返回错误码 pub fn close(fd: usize) -> Result { let binding = ProcessManager::current_pcb().fd_table(); let mut fd_table_guard = binding.write(); return fd_table_guard.drop_fd(fd as i32).map(|_| 0); } /// @brief 根据文件描述符,读取文件数据。尝试读取的数据长度与buf的长度相同。 /// /// @param fd 文件描述符编号 /// @param buf 输出缓冲区。 /// /// @return Ok(usize) 成功读取的数据的字节数 /// @return Err(SystemError) 读取失败,返回posix错误码 pub fn read(fd: i32, buf: &mut [u8]) -> Result { let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.read(); let file = fd_table_guard.get_file_by_fd(fd); if file.is_none() { return Err(SystemError::EBADF); } // drop guard 以避免无法调度的问题 drop(fd_table_guard); let file = file.unwrap(); return file.lock_no_preempt().read(buf.len(), buf); } /// @brief 根据文件描述符,向文件写入数据。尝试写入的数据长度与buf的长度相同。 /// /// @param fd 文件描述符编号 /// @param buf 输入缓冲区。 /// /// @return Ok(usize) 成功写入的数据的字节数 /// @return Err(SystemError) 写入失败,返回posix错误码 pub fn write(fd: i32, buf: &[u8]) -> Result { let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.read(); let file = fd_table_guard .get_file_by_fd(fd) .ok_or(SystemError::EBADF)?; // drop guard 以避免无法调度的问题 drop(fd_table_guard); return file.lock_no_preempt().write(buf.len(), buf); } /// @brief 调整文件操作指针的位置 /// /// @param fd 文件描述符编号 /// @param seek 调整的方式 /// /// @return Ok(usize) 调整后,文件访问指针相对于文件头部的偏移量 /// @return Err(SystemError) 调整失败,返回posix错误码 pub fn lseek(fd: i32, seek: SeekFrom) -> Result { let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.read(); let file = fd_table_guard .get_file_by_fd(fd) .ok_or(SystemError::EBADF)?; // drop guard 以避免无法调度的问题 drop(fd_table_guard); return file.lock_no_preempt().lseek(seek); } /// @brief 切换工作目录 /// /// @param dest_path 目标路径 /// /// @return 返回码 描述 /// 0 | 成功 /// /// EACCESS | 权限不足 /// /// ELOOP | 解析path时遇到路径循环 /// /// ENAMETOOLONG | 路径名过长 /// /// ENOENT | 目标文件或目录不存在 /// /// ENODIR | 检索期间发现非目录项 /// /// ENOMEM | 系统内存不足 /// /// EFAULT | 错误的地址 /// /// ENAMETOOLONG | 路径过长 pub fn chdir(dest_path: &str) -> Result { let proc = ProcessManager::current_pcb(); // Copy path to kernel space to avoid some security issues let path = dest_path.to_string(); let mut new_path = String::from(""); if path.len() > 0 { let cwd = match path.as_bytes()[0] { b'/' => String::from("/"), _ => proc.basic().cwd(), }; let mut cwd_vec: Vec<_> = cwd.split("/").filter(|&x| x != "").collect(); let path_split = path.split("/").filter(|&x| x != ""); for seg in path_split { if seg == ".." { cwd_vec.pop(); } else if seg == "." { // 当前目录 } else { cwd_vec.push(seg); } } //proc.basic().set_path(String::from("")); for seg in cwd_vec { new_path.push_str("/"); new_path.push_str(seg); } if new_path == "" { new_path = String::from("/"); } } let inode = match ROOT_INODE().lookup(&new_path) { Err(e) => { kerror!("Change Directory Failed, Error = {:?}", e); return Err(SystemError::ENOENT); } Ok(i) => i, }; let metadata = inode.metadata()?; if metadata.file_type == FileType::Dir { proc.basic_mut().set_cwd(String::from(new_path)); return Ok(0); } else { return Err(SystemError::ENOTDIR); } } /// @brief 获取当前进程的工作目录路径 /// /// @param buf 指向缓冲区的指针 /// @param size 缓冲区的大小 /// /// @return 成功,返回的指针指向包含工作目录路径的字符串 /// @return 错误,没有足够的空间 pub fn getcwd(buf: &mut [u8]) -> Result { let proc = ProcessManager::current_pcb(); let cwd = proc.basic().cwd(); let cwd_bytes = cwd.as_bytes(); let cwd_len = cwd_bytes.len(); if cwd_len + 1 > buf.len() { return Err(SystemError::ENOMEM); } buf[..cwd_len].copy_from_slice(cwd_bytes); buf[cwd_len] = 0; return Ok(VirtAddr::new(buf.as_ptr() as usize)); } /// @brief 获取目录中的数据 /// /// TODO: 这个函数的语义与Linux不一致,需要修改!!! /// /// @param fd 文件描述符号 /// @param buf 输出缓冲区 /// /// @return 成功返回读取的字节数,失败返回错误码 pub fn getdents(fd: i32, buf: &mut [u8]) -> Result { let dirent = unsafe { (buf.as_mut_ptr() as *mut Dirent).as_mut() }.ok_or(SystemError::EFAULT)?; if fd < 0 || fd as u32 > PROC_MAX_FD_NUM { return Err(SystemError::EBADF); } // 获取fd let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.read(); let file = fd_table_guard .get_file_by_fd(fd) .ok_or(SystemError::EBADF)?; // drop guard 以避免无法调度的问题 drop(fd_table_guard); return file.lock_no_preempt().readdir(dirent).map(|x| x as usize); } /// @brief 创建文件夹 /// /// @param path(r8) 路径 / mode(r9) 模式 /// /// @return uint64_t 负数错误码 / 0表示成功 pub fn mkdir(path: &str, mode: usize) -> Result { return do_mkdir(path, FileMode::from_bits_truncate(mode as u32)).map(|x| x as usize); } /// **删除文件夹、取消文件的链接、删除文件的系统调用** /// /// ## 参数 /// /// - `dirfd`:文件夹的文件描述符.目前暂未实现 /// - `pathname`:文件夹的路径 /// - `flags`:标志位 /// /// pub fn unlinkat(_dirfd: i32, pathname: &str, flags: u32) -> Result { // kdebug!("sys_unlink_at={path:?}"); if (flags & (!AT_REMOVEDIR)) != 0 { return Err(SystemError::EINVAL); } if (flags & AT_REMOVEDIR) > 0 { // kdebug!("rmdir"); match do_remove_dir(&pathname) { Err(err) => { kerror!("Failed to Remove Directory, Error Code = {:?}", err); return Err(err); } Ok(_) => { return Ok(0); } } } match do_unlink_at(&pathname, FileMode::from_bits_truncate(flags as u32)) { Err(err) => { kerror!("Failed to Remove Directory, Error Code = {:?}", err); return Err(err); } Ok(_) => { return Ok(0); } } } /// @brief 根据提供的文件描述符的fd,复制对应的文件结构体,并返回新复制的文件结构体对应的fd pub fn dup(oldfd: i32) -> Result { let binding = ProcessManager::current_pcb().fd_table(); let mut fd_table_guard = binding.write(); let old_file = fd_table_guard .get_file_by_fd(oldfd) .ok_or(SystemError::EBADF)?; let new_file = old_file .lock_no_preempt() .try_clone() .ok_or(SystemError::EBADF)?; // 申请文件描述符,并把文件对象存入其中 let res = fd_table_guard.alloc_fd(new_file, None).map(|x| x as usize); return res; } /// 根据提供的文件描述符的fd,和指定新fd,复制对应的文件结构体, /// 并返回新复制的文件结构体对应的fd. /// 如果新fd已经打开,则会先关闭新fd. /// /// ## 参数 /// /// - `oldfd`:旧文件描述符 /// - `newfd`:新文件描述符 /// /// ## 返回值 /// /// - 成功:新文件描述符 /// - 失败:错误码 pub fn dup2(oldfd: i32, newfd: i32) -> Result { let binding = ProcessManager::current_pcb().fd_table(); let mut fd_table_guard = binding.write(); return Self::do_dup2(oldfd, newfd, &mut fd_table_guard); } fn do_dup2( oldfd: i32, newfd: i32, fd_table_guard: &mut RwLockWriteGuard<'_, FileDescriptorVec>, ) -> Result { // 确认oldfd, newid是否有效 if !(FileDescriptorVec::validate_fd(oldfd) && FileDescriptorVec::validate_fd(newfd)) { return Err(SystemError::EBADF); } if oldfd == newfd { // 若oldfd与newfd相等 return Ok(newfd as usize); } let new_exists = fd_table_guard.get_file_by_fd(newfd).is_some(); if new_exists { // close newfd if let Err(_) = fd_table_guard.drop_fd(newfd) { // An I/O error occurred while attempting to close fildes2. return Err(SystemError::EIO); } } let old_file = fd_table_guard .get_file_by_fd(oldfd) .ok_or(SystemError::EBADF)?; let new_file = old_file .lock_no_preempt() .try_clone() .ok_or(SystemError::EBADF)?; // 申请文件描述符,并把文件对象存入其中 let res = fd_table_guard .alloc_fd(new_file, Some(newfd)) .map(|x| x as usize); return res; } /// # fcntl /// /// ## 参数 /// /// - `fd`:文件描述符 /// - `cmd`:命令 /// - `arg`:参数 pub fn fcntl(fd: i32, cmd: FcntlCommand, arg: i32) -> Result { match cmd { FcntlCommand::DupFd => { if arg < 0 || arg as usize >= FileDescriptorVec::PROCESS_MAX_FD { return Err(SystemError::EBADF); } let arg = arg as usize; for i in arg..FileDescriptorVec::PROCESS_MAX_FD { let binding = ProcessManager::current_pcb().fd_table(); let mut fd_table_guard = binding.write(); if fd_table_guard.get_file_by_fd(fd).is_none() { return Self::do_dup2(fd, i as i32, &mut fd_table_guard); } } return Err(SystemError::EMFILE); } FcntlCommand::GetFd => { // Get file descriptor flags. let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.read(); if let Some(file) = fd_table_guard.get_file_by_fd(fd) { // drop guard 以避免无法调度的问题 drop(fd_table_guard); if file.lock().close_on_exec() { return Ok(FD_CLOEXEC as usize); } } return Err(SystemError::EBADF); } FcntlCommand::SetFd => { // Set file descriptor flags. let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.write(); if let Some(file) = fd_table_guard.get_file_by_fd(fd) { // drop guard 以避免无法调度的问题 drop(fd_table_guard); let arg = arg as u32; if arg & FD_CLOEXEC != 0 { file.lock().set_close_on_exec(true); } else { file.lock().set_close_on_exec(false); } return Ok(0); } return Err(SystemError::EBADF); } FcntlCommand::GetFlags => { // Get file status flags. let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.read(); if let Some(file) = fd_table_guard.get_file_by_fd(fd) { // drop guard 以避免无法调度的问题 drop(fd_table_guard); return Ok(file.lock_no_preempt().mode().bits() as usize); } return Err(SystemError::EBADF); } FcntlCommand::SetFlags => { // Set file status flags. let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.write(); if let Some(file) = fd_table_guard.get_file_by_fd(fd) { let arg = arg as u32; let mode = FileMode::from_bits(arg).ok_or(SystemError::EINVAL)?; // drop guard 以避免无法调度的问题 drop(fd_table_guard); file.lock_no_preempt().set_mode(mode)?; return Ok(0); } return Err(SystemError::EBADF); } _ => { // TODO: unimplemented // 未实现的命令,返回0,不报错。 // kwarn!("fcntl: unimplemented command: {:?}, defaults to 0.", cmd); return Ok(0); } } } /// # ftruncate /// /// ## 描述 /// /// 改变文件大小. /// 如果文件大小大于原来的大小,那么文件的内容将会被扩展到指定的大小,新的空间将会用0填充. /// 如果文件大小小于原来的大小,那么文件的内容将会被截断到指定的大小. /// /// ## 参数 /// /// - `fd`:文件描述符 /// - `len`:文件大小 /// /// ## 返回值 /// /// 如果成功,返回0,否则返回错误码. pub fn ftruncate(fd: i32, len: usize) -> Result { let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.read(); if let Some(file) = fd_table_guard.get_file_by_fd(fd) { // drop guard 以避免无法调度的问题 drop(fd_table_guard); let r = file.lock_no_preempt().ftruncate(len).map(|_| 0); return r; } return Err(SystemError::EBADF); } fn do_fstat(fd: i32) -> Result { let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.read(); let file = fd_table_guard .get_file_by_fd(fd) .ok_or(SystemError::EBADF)?; // drop guard 以避免无法调度的问题 drop(fd_table_guard); let mut kstat = PosixKstat::new(); // 获取文件信息 let metadata = file.lock().metadata()?; kstat.size = metadata.size as i64; kstat.dev_id = metadata.dev_id as u64; kstat.inode = metadata.inode_id.into() as u64; kstat.blcok_size = metadata.blk_size as i64; kstat.blocks = metadata.blocks as u64; kstat.atime.tv_sec = metadata.atime.tv_sec; kstat.atime.tv_nsec = metadata.atime.tv_nsec; kstat.mtime.tv_sec = metadata.mtime.tv_sec; kstat.mtime.tv_nsec = metadata.mtime.tv_nsec; kstat.ctime.tv_sec = metadata.ctime.tv_sec; kstat.ctime.tv_nsec = metadata.ctime.tv_nsec; kstat.nlink = metadata.nlinks as u64; kstat.uid = metadata.uid as i32; kstat.gid = metadata.gid as i32; kstat.rdev = metadata.raw_dev as i64; kstat.mode = metadata.mode; match file.lock().file_type() { FileType::File => kstat.mode.insert(ModeType::S_IFMT), FileType::Dir => kstat.mode.insert(ModeType::S_IFDIR), FileType::BlockDevice => kstat.mode.insert(ModeType::S_IFBLK), FileType::CharDevice => kstat.mode.insert(ModeType::S_IFCHR), FileType::SymLink => kstat.mode.insert(ModeType::S_IFLNK), FileType::Socket => kstat.mode.insert(ModeType::S_IFSOCK), FileType::Pipe => kstat.mode.insert(ModeType::S_IFIFO), } return Ok(kstat); } pub fn fstat(fd: i32, usr_kstat: *mut PosixKstat) -> Result { let kstat = Self::do_fstat(fd)?; if usr_kstat.is_null() { return Err(SystemError::EFAULT); } unsafe { *usr_kstat = kstat; } return Ok(0); } } #[repr(C)] #[derive(Debug, Clone, Copy)] pub struct IoVec { /// 缓冲区的起始地址 pub iov_base: *mut u8, /// 缓冲区的长度 pub iov_len: usize, } /// 用于存储多个来自用户空间的IoVec /// /// 由于目前内核中的文件系统还不支持分散读写,所以暂时只支持将用户空间的IoVec聚合成一个缓冲区,然后进行操作。 /// TODO:支持分散读写 #[derive(Debug)] pub struct IoVecs(Vec<&'static mut [u8]>); impl IoVecs { /// 从用户空间的IoVec中构造IoVecs /// /// @param iov 用户空间的IoVec /// @param iovcnt 用户空间的IoVec的数量 /// @param readv 是否为readv系统调用 /// /// @return 构造成功返回IoVecs,否则返回错误码 pub unsafe fn from_user( iov: *const IoVec, iovcnt: usize, _readv: bool, ) -> Result { // 检查iov指针所在空间是否合法 if !verify_area( iov as usize as u64, (iovcnt * core::mem::size_of::()) as u64, ) { return Err(SystemError::EFAULT); } // 将用户空间的IoVec转换为引用(注意:这里的引用是静态的,因为用户空间的IoVec不会被释放) let iovs: &[IoVec] = core::slice::from_raw_parts(iov, iovcnt); let mut slices: Vec<&mut [u8]> = vec![]; slices.reserve(iovs.len()); for iov in iovs.iter() { if iov.iov_len == 0 { continue; } if !verify_area(iov.iov_base as usize as u64, iov.iov_len as u64) { return Err(SystemError::EFAULT); } slices.push(core::slice::from_raw_parts_mut(iov.iov_base, iov.iov_len)); } return Ok(Self(slices)); } /// @brief 将IoVecs中的数据聚合到一个缓冲区中 /// /// @return 返回聚合后的缓冲区 pub fn gather(&self) -> Vec { let mut buf = Vec::new(); for slice in self.0.iter() { buf.extend_from_slice(slice); } return buf; } /// @brief 将给定的数据分散写入到IoVecs中 pub fn scatter(&mut self, data: &[u8]) { let mut data: &[u8] = data; for slice in self.0.iter_mut() { let len = core::cmp::min(slice.len(), data.len()); if len == 0 { continue; } slice[..len].copy_from_slice(&data[..len]); data = &data[len..]; } } /// @brief 创建与IoVecs等长的缓冲区 /// /// @param set_len 是否设置返回的Vec的len。 /// 如果为true,则返回的Vec的len为所有IoVec的长度之和; /// 否则返回的Vec的len为0,capacity为所有IoVec的长度之和. /// /// @return 返回创建的缓冲区 pub fn new_buf(&self, set_len: bool) -> Vec { let total_len: usize = self.0.iter().map(|slice| slice.len()).sum(); let mut buf: Vec = Vec::with_capacity(total_len); if set_len { buf.resize(total_len, 0); } return buf; } }