use core::ffi::c_void; use core::mem::size_of; use alloc::string::ToString; use alloc::{string::String, sync::Arc, vec::Vec}; use system_error::SystemError; use crate::producefs; use crate::{ driver::base::{block::SeekFrom, device::device_number::DeviceNumber}, filesystem::vfs::{core as Vcore, file::FileDescriptorVec}, kerror, libs::rwlock::RwLockWriteGuard, mm::{verify_area, VirtAddr}, process::ProcessManager, syscall::{ user_access::{self, check_and_clone_cstr, UserBufferWriter}, Syscall, }, time::PosixTimeSpec, }; use super::SuperBlock; use super::{ core::{do_mkdir, do_remove_dir, do_unlink_at}, fcntl::{AtFlags, FcntlCommand, FD_CLOEXEC}, file::{File, FileMode}, open::{do_faccessat, do_fchmodat, do_sys_open}, utils::{rsplit_path, user_path_at}, Dirent, FileType, IndexNode, FSMAKER, MAX_PATHLEN, ROOT_INODE, VFS_MAX_FOLLOW_SYMLINK_TIMES, }; // use crate::kdebug; pub const SEEK_SET: u32 = 0; pub const SEEK_CUR: u32 = 1; pub const SEEK_END: u32 = 2; pub const SEEK_MAX: u32 = 3; bitflags! { /// 文件类型和权限 #[repr(C)] pub struct ModeType: u32 { /// 掩码 const S_IFMT = 0o0_170_000; /// 文件类型 const S_IFSOCK = 0o140000; const S_IFLNK = 0o120000; const S_IFREG = 0o100000; const S_IFBLK = 0o060000; const S_IFDIR = 0o040000; const S_IFCHR = 0o020000; const S_IFIFO = 0o010000; const S_ISUID = 0o004000; const S_ISGID = 0o002000; const S_ISVTX = 0o001000; /// 文件用户权限 const S_IRWXU = 0o0700; const S_IRUSR = 0o0400; const S_IWUSR = 0o0200; const S_IXUSR = 0o0100; /// 文件组权限 const S_IRWXG = 0o0070; const S_IRGRP = 0o0040; const S_IWGRP = 0o0020; const S_IXGRP = 0o0010; /// 文件其他用户权限 const S_IRWXO = 0o0007; const S_IROTH = 0o0004; const S_IWOTH = 0o0002; const S_IXOTH = 0o0001; /// 0o777 const S_IRWXUGO = Self::S_IRWXU.bits | Self::S_IRWXG.bits | Self::S_IRWXO.bits; /// 0o7777 const S_IALLUGO = Self::S_ISUID.bits | Self::S_ISGID.bits | Self::S_ISVTX.bits| Self::S_IRWXUGO.bits; /// 0o444 const S_IRUGO = Self::S_IRUSR.bits | Self::S_IRGRP.bits | Self::S_IROTH.bits; /// 0o222 const S_IWUGO = Self::S_IWUSR.bits | Self::S_IWGRP.bits | Self::S_IWOTH.bits; /// 0o111 const S_IXUGO = Self::S_IXUSR.bits | Self::S_IXGRP.bits | Self::S_IXOTH.bits; } } #[repr(C)] #[derive(Clone, Copy)] /// # 文件信息结构体 pub struct PosixKstat { /// 硬件设备ID dev_id: u64, /// inode号 inode: u64, /// 硬链接数 nlink: u64, /// 文件权限 mode: ModeType, /// 所有者用户ID uid: i32, /// 所有者组ID gid: i32, /// 设备ID rdev: i64, /// 文件大小 size: i64, /// 文件系统块大小 blcok_size: i64, /// 分配的512B块数 blocks: u64, /// 最后访问时间 atime: PosixTimeSpec, /// 最后修改时间 mtime: PosixTimeSpec, /// 最后状态变化时间 ctime: PosixTimeSpec, /// 用于填充结构体大小的空白数据 pub _pad: [i8; 24], } impl PosixKstat { fn new() -> Self { Self { inode: 0, dev_id: 0, mode: ModeType { bits: 0 }, nlink: 0, uid: 0, gid: 0, rdev: 0, size: 0, atime: PosixTimeSpec { tv_sec: 0, tv_nsec: 0, }, mtime: PosixTimeSpec { tv_sec: 0, tv_nsec: 0, }, ctime: PosixTimeSpec { tv_sec: 0, tv_nsec: 0, }, blcok_size: 0, blocks: 0, _pad: Default::default(), } } } #[repr(C)] #[derive(Clone, Copy)] /// # 文件信息结构体X pub struct PosixStatx { /* 0x00 */ stx_mask: PosixStatxMask, /// 文件系统块大小 stx_blksize: u32, /// Flags conveying information about the file [uncond] stx_attributes: StxAttributes, /* 0x10 */ /// 硬链接数 stx_nlink: u32, /// 所有者用户ID stx_uid: u32, /// 所有者组ID stx_gid: u32, /// 文件权限 stx_mode: ModeType, /* 0x20 */ /// inode号 stx_inode: u64, /// 文件大小 stx_size: i64, /// 分配的512B块数 stx_blocks: u64, /// Mask to show what's supported in stx_attributes stx_attributes_mask: StxAttributes, /* 0x40 */ /// 最后访问时间 stx_atime: PosixTimeSpec, /// 文件创建时间 stx_btime: PosixTimeSpec, /// 最后状态变化时间 stx_ctime: PosixTimeSpec, /// 最后修改时间 stx_mtime: PosixTimeSpec, /* 0x80 */ /// 主设备ID stx_rdev_major: u32, /// 次设备ID stx_rdev_minor: u32, /// 主硬件设备ID stx_dev_major: u32, /// 次硬件设备ID stx_dev_minor: u32, /* 0x90 */ stx_mnt_id: u64, stx_dio_mem_align: u32, stx_dio_offset_align: u32, } impl PosixStatx { fn new() -> Self { Self { stx_mask: PosixStatxMask::STATX_BASIC_STATS, stx_blksize: 0, stx_attributes: StxAttributes::STATX_ATTR_APPEND, stx_nlink: 0, stx_uid: 0, stx_gid: 0, stx_mode: ModeType { bits: 0 }, stx_inode: 0, stx_size: 0, stx_blocks: 0, stx_attributes_mask: StxAttributes::STATX_ATTR_APPEND, stx_atime: PosixTimeSpec { tv_sec: 0, tv_nsec: 0, }, stx_btime: PosixTimeSpec { tv_sec: 0, tv_nsec: 0, }, stx_ctime: PosixTimeSpec { tv_sec: 0, tv_nsec: 0, }, stx_mtime: PosixTimeSpec { tv_sec: 0, tv_nsec: 0, }, stx_rdev_major: 0, stx_rdev_minor: 0, stx_dev_major: 0, stx_dev_minor: 0, stx_mnt_id: 0, stx_dio_mem_align: 0, stx_dio_offset_align: 0, } } } bitflags! { pub struct PosixStatxMask: u32{ /// Want stx_mode & S_IFMT const STATX_TYPE = 0x00000001; /// Want stx_mode & ~S_IFMT const STATX_MODE = 0x00000002; /// Want stx_nlink const STATX_NLINK = 0x00000004; /// Want stx_uid const STATX_UID = 0x00000008; /// Want stx_gid const STATX_GID = 0x00000010; /// Want stx_atime const STATX_ATIME = 0x00000020; /// Want stx_mtime const STATX_MTIME = 0x00000040; /// Want stx_ctime const STATX_CTIME = 0x00000080; /// Want stx_ino const STATX_INO = 0x00000100; /// Want stx_size const STATX_SIZE = 0x00000200; /// Want stx_blocks const STATX_BLOCKS = 0x00000400; /// [All of the above] const STATX_BASIC_STATS = 0x000007ff; /// Want stx_btime const STATX_BTIME = 0x00000800; /// The same as STATX_BASIC_STATS | STATX_BTIME. /// It is deprecated and should not be used. const STATX_ALL = 0x00000fff; /// Want stx_mnt_id (since Linux 5.8) const STATX_MNT_ID = 0x00001000; /// Want stx_dio_mem_align and stx_dio_offset_align /// (since Linux 6.1; support varies by filesystem) const STATX_DIOALIGN = 0x00002000; /// Reserved for future struct statx expansion const STATX_RESERVED = 0x80000000; } } bitflags! { pub struct StxAttributes: u64 { /// 文件被文件系统压缩 const STATX_ATTR_COMPRESSED = 0x00000004; /// 文件被标记为不可修改 const STATX_ATTR_IMMUTABLE = 0x00000010; /// 文件是只追加写入的 const STATX_ATTR_APPEND = 0x00000020; /// 文件不会被备份 const STATX_ATTR_NODUMP = 0x00000040; /// 文件需要密钥才能在文件系统中解密 const STATX_ATTR_ENCRYPTED = 0x00000800; /// 目录是自动挂载触发器 const STATX_ATTR_AUTOMOUNT = 0x00001000; /// 目录是挂载点的根目录 const STATX_ATTR_MOUNT_ROOT = 0x00002000; /// 文件受到 Verity 保护 const STATX_ATTR_VERITY = 0x00100000; /// 文件当前处于 DAX 状态 CPU直接访问 const STATX_ATTR_DAX = 0x00200000; } } #[repr(C)] #[derive(Debug, Clone, Copy)] pub struct PosixStatfs { f_type: u64, f_bsize: u64, f_blocks: u64, f_bfree: u64, f_bavail: u64, f_files: u64, f_ffree: u64, f_fsid: u64, f_namelen: u64, f_frsize: u64, f_flags: u64, f_spare: [u64; 4], } impl From for PosixStatfs { fn from(super_block: SuperBlock) -> Self { Self { f_type: super_block.magic.bits, f_bsize: super_block.bsize, f_blocks: super_block.blocks, f_bfree: super_block.bfree, f_bavail: super_block.bavail, f_files: super_block.files, f_ffree: super_block.ffree, f_fsid: super_block.fsid, f_namelen: super_block.namelen, f_frsize: super_block.frsize, f_flags: super_block.flags, f_spare: [0u64; 4], } } } /// /// Arguments for how openat2(2) should open the target path. If only @flags and /// @mode are non-zero, then openat2(2) operates very similarly to openat(2). /// /// However, unlike openat(2), unknown or invalid bits in @flags result in /// -EINVAL rather than being silently ignored. @mode must be zero unless one of /// {O_CREAT, O_TMPFILE} are set. /// /// ## 成员变量 /// /// - flags: O_* flags. /// - mode: O_CREAT/O_TMPFILE file mode. /// - resolve: RESOLVE_* flags. #[derive(Debug, Clone, Copy)] #[repr(C)] pub struct PosixOpenHow { pub flags: u64, pub mode: u64, pub resolve: u64, } impl PosixOpenHow { #[allow(dead_code)] pub fn new(flags: u64, mode: u64, resolve: u64) -> Self { Self { flags, mode, resolve, } } } #[derive(Debug, Clone, Copy)] pub struct OpenHow { pub o_flags: FileMode, pub mode: ModeType, pub resolve: OpenHowResolve, } impl OpenHow { pub fn new(mut o_flags: FileMode, mut mode: ModeType, resolve: OpenHowResolve) -> Self { if !o_flags.contains(FileMode::O_CREAT) { mode = ModeType::empty(); } if o_flags.contains(FileMode::O_PATH) { o_flags = o_flags.intersection(FileMode::O_PATH_FLAGS); } Self { o_flags, mode, resolve, } } } impl From for OpenHow { fn from(posix_open_how: PosixOpenHow) -> Self { let o_flags = FileMode::from_bits_truncate(posix_open_how.flags as u32); let mode = ModeType::from_bits_truncate(posix_open_how.mode as u32); let resolve = OpenHowResolve::from_bits_truncate(posix_open_how.resolve); return Self::new(o_flags, mode, resolve); } } bitflags! { pub struct OpenHowResolve: u64{ /// Block mount-point crossings /// (including bind-mounts). const RESOLVE_NO_XDEV = 0x01; /// Block traversal through procfs-style /// "magic-links" const RESOLVE_NO_MAGICLINKS = 0x02; /// Block traversal through all symlinks /// (implies OEXT_NO_MAGICLINKS) const RESOLVE_NO_SYMLINKS = 0x04; /// Block "lexical" trickery like /// "..", symlinks, and absolute const RESOLVE_BENEATH = 0x08; /// Make all jumps to "/" and ".." /// be scoped inside the dirfd /// (similar to chroot(2)). const RESOLVE_IN_ROOT = 0x10; // Only complete if resolution can be // completed through cached lookup. May // return -EAGAIN if that's not // possible. const RESOLVE_CACHED = 0x20; } } impl Syscall { /// @brief 为当前进程打开一个文件 /// /// @param path 文件路径 /// @param o_flags 打开文件的标志位 /// /// @return 文件描述符编号,或者是错误码 pub fn open( path: *const u8, o_flags: u32, mode: u32, follow_symlink: bool, ) -> Result { let path = check_and_clone_cstr(path, Some(MAX_PATHLEN))?; let open_flags: FileMode = FileMode::from_bits(o_flags).ok_or(SystemError::EINVAL)?; let mode = ModeType::from_bits(mode).ok_or(SystemError::EINVAL)?; return do_sys_open( AtFlags::AT_FDCWD.bits(), &path, open_flags, mode, follow_symlink, ); } pub fn openat( dirfd: i32, path: *const u8, o_flags: u32, mode: u32, follow_symlink: bool, ) -> Result { let path = check_and_clone_cstr(path, Some(MAX_PATHLEN))?; let open_flags: FileMode = FileMode::from_bits(o_flags).ok_or(SystemError::EINVAL)?; let mode = ModeType::from_bits(mode).ok_or(SystemError::EINVAL)?; return do_sys_open(dirfd, &path, open_flags, mode, follow_symlink); } /// @brief 关闭文件 /// /// @param fd 文件描述符编号 /// /// @return 成功返回0,失败返回错误码 pub fn close(fd: usize) -> Result { let binding = ProcessManager::current_pcb().fd_table(); let mut fd_table_guard = binding.write(); fd_table_guard.drop_fd(fd as i32).map(|_| 0) } /// @brief 发送命令到文件描述符对应的设备, /// /// @param fd 文件描述符编号 /// @param cmd 设备相关的请求类型 /// /// @return Ok(usize) 成功返回0 /// @return Err(SystemError) 读取失败,返回posix错误码 pub fn ioctl(fd: usize, cmd: u32, data: usize) -> Result { let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.read(); let file = fd_table_guard .get_file_by_fd(fd as i32) .ok_or(SystemError::EBADF)?; // drop guard 以避免无法调度的问题 drop(fd_table_guard); let r = file.inode().ioctl(cmd, data, &file.private_data.lock()); return r; } /// @brief 根据文件描述符,读取文件数据。尝试读取的数据长度与buf的长度相同。 /// /// @param fd 文件描述符编号 /// @param buf 输出缓冲区 /// /// @return Ok(usize) 成功读取的数据的字节数 /// @return Err(SystemError) 读取失败,返回posix错误码 pub fn read(fd: i32, buf: &mut [u8]) -> Result { let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.read(); let file = fd_table_guard.get_file_by_fd(fd); if file.is_none() { return Err(SystemError::EBADF); } // drop guard 以避免无法调度的问题 drop(fd_table_guard); let file = file.unwrap(); return file.read(buf.len(), buf); } /// @brief 根据文件描述符,向文件写入数据。尝试写入的数据长度与buf的长度相同。 /// /// @param fd 文件描述符编号 /// @param buf 输入缓冲区 /// /// @return Ok(usize) 成功写入的数据的字节数 /// @return Err(SystemError) 写入失败,返回posix错误码 pub fn write(fd: i32, buf: &[u8]) -> Result { let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.read(); let file = fd_table_guard .get_file_by_fd(fd) .ok_or(SystemError::EBADF)?; // drop guard 以避免无法调度的问题 drop(fd_table_guard); return file.write(buf.len(), buf); } /// @brief 调整文件操作指针的位置 /// /// @param fd 文件描述符编号 /// @param seek 调整的方式 /// /// @return Ok(usize) 调整后,文件访问指针相对于文件头部的偏移量 /// @return Err(SystemError) 调整失败,返回posix错误码 pub fn lseek(fd: i32, offset: i64, seek: u32) -> Result { let seek = match seek { SEEK_SET => Ok(SeekFrom::SeekSet(offset)), SEEK_CUR => Ok(SeekFrom::SeekCurrent(offset)), SEEK_END => Ok(SeekFrom::SeekEnd(offset)), SEEK_MAX => Ok(SeekFrom::SeekEnd(0)), _ => Err(SystemError::EINVAL), }?; let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.read(); let file = fd_table_guard .get_file_by_fd(fd) .ok_or(SystemError::EBADF)?; // drop guard 以避免无法调度的问题 drop(fd_table_guard); return file.lseek(seek); } /// # sys_pread64 系统调用的实际执行函数 /// /// ## 参数 /// - `fd`: 文件描述符 /// - `buf`: 读出缓冲区 /// - `len`: 要读取的字节数 /// - `offset`: 文件偏移量 pub fn pread(fd: i32, buf: &mut [u8], len: usize, offset: usize) -> Result { let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.read(); let file = fd_table_guard.get_file_by_fd(fd); if file.is_none() { return Err(SystemError::EBADF); } // drop guard 以避免无法调度的问题 drop(fd_table_guard); let file = file.unwrap(); return file.pread(offset, len, buf); } /// # sys_pwrite64 系统调用的实际执行函数 /// /// ## 参数 /// - `fd`: 文件描述符 /// - `buf`: 写入缓冲区 /// - `len`: 要写入的字节数 /// - `offset`: 文件偏移量 pub fn pwrite(fd: i32, buf: &[u8], len: usize, offset: usize) -> Result { let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.read(); let file = fd_table_guard.get_file_by_fd(fd); if file.is_none() { return Err(SystemError::EBADF); } // drop guard 以避免无法调度的问题 drop(fd_table_guard); let file = file.unwrap(); return file.pwrite(offset, len, buf); } /// @brief 切换工作目录 /// /// @param dest_path 目标路径 /// /// @return 返回码 描述 /// 0 | 成功 /// /// EACCESS | 权限不足 /// /// ELOOP | 解析path时遇到路径循环 /// /// ENAMETOOLONG | 路径名过长 /// /// ENOENT | 目标文件或目录不存在 /// /// ENODIR | 检索期间发现非目录项 /// /// ENOMEM | 系统内存不足 /// /// EFAULT | 错误的地址 /// /// ENAMETOOLONG | 路径过长 pub fn chdir(path: *const u8) -> Result { if path.is_null() { return Err(SystemError::EFAULT); } let path = check_and_clone_cstr(path, Some(MAX_PATHLEN))?; let proc = ProcessManager::current_pcb(); // Copy path to kernel space to avoid some security issues let mut new_path = String::from(""); if !path.is_empty() { let cwd = match path.as_bytes()[0] { b'/' => String::from("/"), _ => proc.basic().cwd(), }; let mut cwd_vec: Vec<_> = cwd.split('/').filter(|&x| !x.is_empty()).collect(); let path_split = path.split('/').filter(|&x| !x.is_empty()); for seg in path_split { if seg == ".." { cwd_vec.pop(); } else if seg == "." { // 当前目录 } else { cwd_vec.push(seg); } } //proc.basic().set_path(String::from("")); for seg in cwd_vec { new_path.push('/'); new_path.push_str(seg); } if new_path.is_empty() { new_path = String::from("/"); } } let inode = match ROOT_INODE().lookup_follow_symlink(&new_path, VFS_MAX_FOLLOW_SYMLINK_TIMES) { Err(_) => { return Err(SystemError::ENOENT); } Ok(i) => i, }; let metadata = inode.metadata()?; if metadata.file_type == FileType::Dir { proc.basic_mut().set_cwd(new_path); return Ok(0); } else { return Err(SystemError::ENOTDIR); } } /// @brief 获取当前进程的工作目录路径 /// /// @param buf 指向缓冲区的指针 /// @param size 缓冲区的大小 /// /// @return 成功,返回的指针指向包含工作目录路径的字符串 /// @return 错误,没有足够的空间 pub fn getcwd(buf: &mut [u8]) -> Result { let proc = ProcessManager::current_pcb(); let cwd = proc.basic().cwd(); let cwd_bytes = cwd.as_bytes(); let cwd_len = cwd_bytes.len(); if cwd_len + 1 > buf.len() { return Err(SystemError::ENOMEM); } buf[..cwd_len].copy_from_slice(cwd_bytes); buf[cwd_len] = 0; return Ok(VirtAddr::new(buf.as_ptr() as usize)); } /// @brief 获取目录中的数据 /// /// TODO: 这个函数的语义与Linux不一致,需要修改!!! /// /// @param fd 文件描述符号 /// @param buf 输出缓冲区 /// /// @return 成功返回读取的字节数,失败返回错误码 pub fn getdents(fd: i32, buf: &mut [u8]) -> Result { let dirent = unsafe { (buf.as_mut_ptr() as *mut Dirent).as_mut() }.ok_or(SystemError::EFAULT)?; if fd < 0 || fd as usize > FileDescriptorVec::PROCESS_MAX_FD { return Err(SystemError::EBADF); } // 获取fd let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.read(); let file = fd_table_guard .get_file_by_fd(fd) .ok_or(SystemError::EBADF)?; // drop guard 以避免无法调度的问题 drop(fd_table_guard); let res = file.readdir(dirent).map(|x| x as usize); return res; } /// @brief 创建文件夹 /// /// @param path(r8) 路径 / mode(r9) 模式 /// /// @return uint64_t 负数错误码 / 0表示成功 pub fn mkdir(path: *const u8, mode: usize) -> Result { let path = check_and_clone_cstr(path, Some(MAX_PATHLEN))?; return do_mkdir(&path, FileMode::from_bits_truncate(mode as u32)).map(|x| x as usize); } /// **创建硬连接的系统调用** /// /// ## 参数 /// /// - 'oldfd': 用于解析源文件路径的文件描述符 /// - 'old': 源文件路径 /// - 'newfd': 用于解析新文件路径的文件描述符 /// - 'new': 新文件将创建的路径 /// - 'flags': 标志位,仅以位或方式包含AT_EMPTY_PATH和AT_SYMLINK_FOLLOW /// /// pub fn do_linkat( oldfd: i32, old: &str, newfd: i32, new: &str, flags: AtFlags, ) -> Result { // flag包含其他未规定值时返回EINVAL if !(AtFlags::AT_EMPTY_PATH | AtFlags::AT_SYMLINK_FOLLOW).contains(flags) { return Err(SystemError::EINVAL); } // TODO AT_EMPTY_PATH标志启用时,进行调用者CAP_DAC_READ_SEARCH或相似的检查 let symlink_times = if flags.contains(AtFlags::AT_SYMLINK_FOLLOW) { 0_usize } else { VFS_MAX_FOLLOW_SYMLINK_TIMES }; let pcb = ProcessManager::current_pcb(); // 得到源路径的inode let old_inode: Arc = if old.is_empty() { if flags.contains(AtFlags::AT_EMPTY_PATH) { // 在AT_EMPTY_PATH启用时,old可以为空,old_inode实际为oldfd所指文件,但该文件不能为目录。 let binding = pcb.fd_table(); let fd_table_guard = binding.read(); let file = fd_table_guard .get_file_by_fd(oldfd) .ok_or(SystemError::EBADF)?; let old_inode = file.inode(); old_inode } else { return Err(SystemError::ENONET); } } else { let (old_begin_inode, old_remain_path) = user_path_at(&pcb, oldfd, old)?; old_begin_inode.lookup_follow_symlink(&old_remain_path, symlink_times)? }; // old_inode为目录时返回EPERM if old_inode.metadata().unwrap().file_type == FileType::Dir { return Err(SystemError::EPERM); } // 得到新创建节点的父节点 let (new_begin_inode, new_remain_path) = user_path_at(&pcb, newfd, new)?; let (new_name, new_parent_path) = rsplit_path(&new_remain_path); let new_parent = new_begin_inode.lookup_follow_symlink(new_parent_path.unwrap_or("/"), symlink_times)?; // 被调用者利用downcast_ref判断两inode是否为同一文件系统 return new_parent.link(new_name, &old_inode).map(|_| 0); } pub fn link(old: *const u8, new: *const u8) -> Result { let get_path = |cstr: *const u8| -> Result { let res = check_and_clone_cstr(cstr, Some(MAX_PATHLEN))?; if res.len() >= MAX_PATHLEN { return Err(SystemError::ENAMETOOLONG); } if res.is_empty() { return Err(SystemError::ENOENT); } Ok(res) }; let old = get_path(old)?; let new = get_path(new)?; return Self::do_linkat( AtFlags::AT_FDCWD.bits(), &old, AtFlags::AT_FDCWD.bits(), &new, AtFlags::empty(), ); } pub fn linkat( oldfd: i32, old: *const u8, newfd: i32, new: *const u8, flags: i32, ) -> Result { let old = check_and_clone_cstr(old, Some(MAX_PATHLEN))?; let new = check_and_clone_cstr(new, Some(MAX_PATHLEN))?; if old.len() >= MAX_PATHLEN || new.len() >= MAX_PATHLEN { return Err(SystemError::ENAMETOOLONG); } // old 根据flags & AtFlags::AT_EMPTY_PATH判空 if new.is_empty() { return Err(SystemError::ENOENT); } let flags = AtFlags::from_bits(flags).ok_or(SystemError::EINVAL)?; Self::do_linkat(oldfd, &old, newfd, &new, flags) } /// **删除文件夹、取消文件的链接、删除文件的系统调用** /// /// ## 参数 /// /// - `dirfd`:文件夹的文件描述符.目前暂未实现 /// - `pathname`:文件夹的路径 /// - `flags`:标志位 /// /// pub fn unlinkat(dirfd: i32, path: *const u8, flags: u32) -> Result { let flags = AtFlags::from_bits(flags as i32).ok_or(SystemError::EINVAL)?; let path = check_and_clone_cstr(path, Some(MAX_PATHLEN))?; if flags.contains(AtFlags::AT_REMOVEDIR) { // kdebug!("rmdir"); match do_remove_dir(dirfd, &path) { Err(err) => { return Err(err); } Ok(_) => { return Ok(0); } } } match do_unlink_at(dirfd, &path) { Err(err) => { return Err(err); } Ok(_) => { return Ok(0); } } } pub fn rmdir(path: *const u8) -> Result { let path = check_and_clone_cstr(path, Some(MAX_PATHLEN))?; return do_remove_dir(AtFlags::AT_FDCWD.bits(), &path).map(|v| v as usize); } pub fn unlink(path: *const u8) -> Result { let path = check_and_clone_cstr(path, Some(MAX_PATHLEN))?; return do_unlink_at(AtFlags::AT_FDCWD.bits(), &path).map(|v| v as usize); } /// # 修改文件名 /// /// /// ## 参数 /// /// - oldfd: 源文件描述符 /// - filename_from: 源文件路径 /// - newfd: 目标文件描述符 /// - filename_to: 目标文件路径 /// - flags: 标志位 /// /// /// ## 返回值 /// - Ok(返回值类型): 返回值的说明 /// - Err(错误值类型): 错误的说明 /// pub fn do_renameat2( oldfd: i32, filename_from: *const u8, newfd: i32, filename_to: *const u8, _flags: u32, ) -> Result { let filename_from = check_and_clone_cstr(filename_from, Some(MAX_PATHLEN)).unwrap(); let filename_to = check_and_clone_cstr(filename_to, Some(MAX_PATHLEN)).unwrap(); // 文件名过长 if filename_from.len() > MAX_PATHLEN || filename_to.len() > MAX_PATHLEN { return Err(SystemError::ENAMETOOLONG); } //获取pcb,文件节点 let pcb = ProcessManager::current_pcb(); let (_old_inode_begin, old_remain_path) = user_path_at(&pcb, oldfd, &filename_from)?; let (_new_inode_begin, new_remain_path) = user_path_at(&pcb, newfd, &filename_to)?; //获取父目录 let (old_filename, old_parent_path) = rsplit_path(&old_remain_path); let old_parent_inode = ROOT_INODE() .lookup_follow_symlink(old_parent_path.unwrap_or("/"), VFS_MAX_FOLLOW_SYMLINK_TIMES)?; let (new_filename, new_parent_path) = rsplit_path(&new_remain_path); let new_parent_inode = ROOT_INODE() .lookup_follow_symlink(new_parent_path.unwrap_or("/"), VFS_MAX_FOLLOW_SYMLINK_TIMES)?; old_parent_inode.move_to(old_filename, &new_parent_inode, new_filename)?; return Ok(0); } /// @brief 根据提供的文件描述符的fd,复制对应的文件结构体,并返回新复制的文件结构体对应的fd pub fn dup(oldfd: i32) -> Result { let binding = ProcessManager::current_pcb().fd_table(); let mut fd_table_guard = binding.write(); let old_file = fd_table_guard .get_file_by_fd(oldfd) .ok_or(SystemError::EBADF)?; let new_file = old_file.try_clone().ok_or(SystemError::EBADF)?; // 申请文件描述符,并把文件对象存入其中 let res = fd_table_guard.alloc_fd(new_file, None).map(|x| x as usize); return res; } /// 根据提供的文件描述符的fd,和指定新fd,复制对应的文件结构体, /// 并返回新复制的文件结构体对应的fd. /// 如果新fd已经打开,则会先关闭新fd. /// /// ## 参数 /// /// - `oldfd`:旧文件描述符 /// - `newfd`:新文件描述符 /// /// ## 返回值 /// /// - 成功:新文件描述符 /// - 失败:错误码 pub fn dup2(oldfd: i32, newfd: i32) -> Result { let binding = ProcessManager::current_pcb().fd_table(); let mut fd_table_guard = binding.write(); return Self::do_dup2(oldfd, newfd, &mut fd_table_guard); } fn do_dup2( oldfd: i32, newfd: i32, fd_table_guard: &mut RwLockWriteGuard<'_, FileDescriptorVec>, ) -> Result { // 确认oldfd, newid是否有效 if !(FileDescriptorVec::validate_fd(oldfd) && FileDescriptorVec::validate_fd(newfd)) { return Err(SystemError::EBADF); } if oldfd == newfd { // 若oldfd与newfd相等 return Ok(newfd as usize); } let new_exists = fd_table_guard.get_file_by_fd(newfd).is_some(); if new_exists { // close newfd if fd_table_guard.drop_fd(newfd).is_err() { // An I/O error occurred while attempting to close fildes2. return Err(SystemError::EIO); } } let old_file = fd_table_guard .get_file_by_fd(oldfd) .ok_or(SystemError::EBADF)?; let new_file = old_file.try_clone().ok_or(SystemError::EBADF)?; // 申请文件描述符,并把文件对象存入其中 let res = fd_table_guard .alloc_fd(new_file, Some(newfd)) .map(|x| x as usize); return res; } /// # fcntl /// /// ## 参数 /// /// - `fd`:文件描述符 /// - `cmd`:命令 /// - `arg`:参数 pub fn fcntl(fd: i32, cmd: FcntlCommand, arg: i32) -> Result { match cmd { FcntlCommand::DupFd => { if arg < 0 || arg as usize >= FileDescriptorVec::PROCESS_MAX_FD { return Err(SystemError::EBADF); } let arg = arg as usize; for i in arg..FileDescriptorVec::PROCESS_MAX_FD { let binding = ProcessManager::current_pcb().fd_table(); let mut fd_table_guard = binding.write(); if fd_table_guard.get_file_by_fd(i as i32).is_none() { return Self::do_dup2(fd, i as i32, &mut fd_table_guard); } } return Err(SystemError::EMFILE); } FcntlCommand::GetFd => { // Get file descriptor flags. let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.read(); if let Some(file) = fd_table_guard.get_file_by_fd(fd) { // drop guard 以避免无法调度的问题 drop(fd_table_guard); if file.close_on_exec() { return Ok(FD_CLOEXEC as usize); } } return Err(SystemError::EBADF); } FcntlCommand::SetFd => { // Set file descriptor flags. let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.write(); if let Some(file) = fd_table_guard.get_file_by_fd(fd) { // drop guard 以避免无法调度的问题 drop(fd_table_guard); let arg = arg as u32; if arg & FD_CLOEXEC != 0 { file.set_close_on_exec(true); } else { file.set_close_on_exec(false); } return Ok(0); } return Err(SystemError::EBADF); } FcntlCommand::GetFlags => { // Get file status flags. let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.read(); if let Some(file) = fd_table_guard.get_file_by_fd(fd) { // drop guard 以避免无法调度的问题 drop(fd_table_guard); return Ok(file.mode().bits() as usize); } return Err(SystemError::EBADF); } FcntlCommand::SetFlags => { // Set file status flags. let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.write(); if let Some(file) = fd_table_guard.get_file_by_fd(fd) { let arg = arg as u32; let mode = FileMode::from_bits(arg).ok_or(SystemError::EINVAL)?; // drop guard 以避免无法调度的问题 drop(fd_table_guard); file.set_mode(mode)?; return Ok(0); } return Err(SystemError::EBADF); } _ => { // TODO: unimplemented // 未实现的命令,返回0,不报错。 // kwarn!("fcntl: unimplemented command: {:?}, defaults to 0.", cmd); return Ok(0); } } } /// # ftruncate /// /// ## 描述 /// /// 改变文件大小. /// 如果文件大小大于原来的大小,那么文件的内容将会被扩展到指定的大小,新的空间将会用0填充. /// 如果文件大小小于原来的大小,那么文件的内容将会被截断到指定的大小. /// /// ## 参数 /// /// - `fd`:文件描述符 /// - `len`:文件大小 /// /// ## 返回值 /// /// 如果成功,返回0,否则返回错误码. pub fn ftruncate(fd: i32, len: usize) -> Result { let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.read(); if let Some(file) = fd_table_guard.get_file_by_fd(fd) { // drop guard 以避免无法调度的问题 drop(fd_table_guard); let r = file.ftruncate(len).map(|_| 0); return r; } return Err(SystemError::EBADF); } fn do_fstat(fd: i32) -> Result { let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.read(); let file = fd_table_guard .get_file_by_fd(fd) .ok_or(SystemError::EBADF)?; // drop guard 以避免无法调度的问题 drop(fd_table_guard); let mut kstat = PosixKstat::new(); // 获取文件信息 let metadata = file.metadata()?; kstat.size = metadata.size; kstat.dev_id = metadata.dev_id as u64; kstat.inode = metadata.inode_id.into() as u64; kstat.blcok_size = metadata.blk_size as i64; kstat.blocks = metadata.blocks as u64; kstat.atime.tv_sec = metadata.atime.tv_sec; kstat.atime.tv_nsec = metadata.atime.tv_nsec; kstat.mtime.tv_sec = metadata.mtime.tv_sec; kstat.mtime.tv_nsec = metadata.mtime.tv_nsec; kstat.ctime.tv_sec = metadata.ctime.tv_sec; kstat.ctime.tv_nsec = metadata.ctime.tv_nsec; kstat.nlink = metadata.nlinks as u64; kstat.uid = metadata.uid as i32; kstat.gid = metadata.gid as i32; kstat.rdev = metadata.raw_dev.data() as i64; kstat.mode = metadata.mode; match file.file_type() { FileType::File => kstat.mode.insert(ModeType::S_IFREG), FileType::Dir => kstat.mode.insert(ModeType::S_IFDIR), FileType::BlockDevice => kstat.mode.insert(ModeType::S_IFBLK), FileType::CharDevice => kstat.mode.insert(ModeType::S_IFCHR), FileType::SymLink => kstat.mode.insert(ModeType::S_IFLNK), FileType::Socket => kstat.mode.insert(ModeType::S_IFSOCK), FileType::Pipe => kstat.mode.insert(ModeType::S_IFIFO), FileType::KvmDevice => kstat.mode.insert(ModeType::S_IFCHR), FileType::FramebufferDevice => kstat.mode.insert(ModeType::S_IFCHR), } return Ok(kstat); } pub fn fstat(fd: i32, usr_kstat: *mut PosixKstat) -> Result { let mut writer = UserBufferWriter::new(usr_kstat, size_of::(), true)?; let kstat = Self::do_fstat(fd)?; writer.copy_one_to_user(&kstat, 0)?; return Ok(0); } pub fn stat(path: *const u8, user_kstat: *mut PosixKstat) -> Result { let fd = Self::open( path, FileMode::O_RDONLY.bits(), ModeType::empty().bits(), true, )?; let r = Self::fstat(fd as i32, user_kstat); Self::close(fd).ok(); return r; } pub fn lstat(path: *const u8, user_kstat: *mut PosixKstat) -> Result { let fd = Self::open( path, FileMode::O_RDONLY.bits(), ModeType::empty().bits(), false, )?; let r = Self::fstat(fd as i32, user_kstat); Self::close(fd).ok(); return r; } pub fn statfs(path: *const u8, user_statfs: *mut PosixStatfs) -> Result { let mut writer = UserBufferWriter::new(user_statfs, size_of::(), true)?; let fd = Self::open( path, FileMode::O_RDONLY.bits(), ModeType::empty().bits(), true, )?; let path = check_and_clone_cstr(path, Some(MAX_PATHLEN)).unwrap(); let pcb = ProcessManager::current_pcb(); let (_inode_begin, remain_path) = user_path_at(&pcb, fd as i32, &path)?; let inode = ROOT_INODE().lookup_follow_symlink(&remain_path, MAX_PATHLEN)?; let statfs = PosixStatfs::from(inode.fs().super_block()); writer.copy_one_to_user(&statfs, 0)?; return Ok(0); } pub fn fstatfs(fd: i32, user_statfs: *mut PosixStatfs) -> Result { let mut writer = UserBufferWriter::new(user_statfs, size_of::(), true)?; let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.read(); let file = fd_table_guard .get_file_by_fd(fd) .ok_or(SystemError::EBADF)?; drop(fd_table_guard); let statfs = PosixStatfs::from(file.inode().fs().super_block()); writer.copy_one_to_user(&statfs, 0)?; return Ok(0); } pub fn do_statx( fd: i32, path: *const u8, flags: u32, mask: u32, usr_kstat: *mut PosixStatx, ) -> Result { if usr_kstat.is_null() { return Err(SystemError::EFAULT); } let mask = PosixStatxMask::from_bits_truncate(mask); if mask.contains(PosixStatxMask::STATX_RESERVED) { return Err(SystemError::ENAVAIL); } let flags = FileMode::from_bits_truncate(flags); let ofd = Self::open(path, flags.bits(), ModeType::empty().bits, true)?; let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.read(); let file = fd_table_guard .get_file_by_fd(ofd as i32) .ok_or(SystemError::EBADF)?; // drop guard 以避免无法调度的问题 drop(fd_table_guard); let mut writer = UserBufferWriter::new(usr_kstat, size_of::(), true)?; let mut tmp: PosixStatx = PosixStatx::new(); // 获取文件信息 let metadata = file.metadata()?; tmp.stx_mask |= PosixStatxMask::STATX_BASIC_STATS; tmp.stx_blksize = metadata.blk_size as u32; if mask.contains(PosixStatxMask::STATX_MODE) || mask.contains(PosixStatxMask::STATX_TYPE) { tmp.stx_mode = metadata.mode; } if mask.contains(PosixStatxMask::STATX_NLINK) { tmp.stx_nlink = metadata.nlinks as u32; } if mask.contains(PosixStatxMask::STATX_UID) { tmp.stx_uid = metadata.uid as u32; } if mask.contains(PosixStatxMask::STATX_GID) { tmp.stx_gid = metadata.gid as u32; } if mask.contains(PosixStatxMask::STATX_ATIME) { tmp.stx_atime.tv_sec = metadata.atime.tv_sec; tmp.stx_atime.tv_nsec = metadata.atime.tv_nsec; } if mask.contains(PosixStatxMask::STATX_MTIME) { tmp.stx_mtime.tv_sec = metadata.ctime.tv_sec; tmp.stx_mtime.tv_nsec = metadata.ctime.tv_nsec; } if mask.contains(PosixStatxMask::STATX_CTIME) { // ctime是文件上次修改状态的时间 tmp.stx_ctime.tv_sec = metadata.mtime.tv_sec; tmp.stx_ctime.tv_nsec = metadata.mtime.tv_nsec; } if mask.contains(PosixStatxMask::STATX_INO) { tmp.stx_inode = metadata.inode_id.into() as u64; } if mask.contains(PosixStatxMask::STATX_SIZE) { tmp.stx_size = metadata.size; } if mask.contains(PosixStatxMask::STATX_BLOCKS) { tmp.stx_blocks = metadata.blocks as u64; } if mask.contains(PosixStatxMask::STATX_BTIME) { // btime是文件创建时间 tmp.stx_btime.tv_sec = metadata.ctime.tv_sec; tmp.stx_btime.tv_nsec = metadata.ctime.tv_nsec; } if mask.contains(PosixStatxMask::STATX_ALL) { tmp.stx_attributes = StxAttributes::STATX_ATTR_APPEND; tmp.stx_attributes_mask |= StxAttributes::STATX_ATTR_AUTOMOUNT | StxAttributes::STATX_ATTR_DAX; tmp.stx_dev_major = metadata.dev_id as u32; tmp.stx_dev_minor = metadata.dev_id as u32; // tmp.stx_rdev_major = metadata.raw_dev.data(); tmp.stx_rdev_minor = metadata.raw_dev.data(); } if mask.contains(PosixStatxMask::STATX_MNT_ID) { tmp.stx_mnt_id = 0; } if mask.contains(PosixStatxMask::STATX_DIOALIGN) { tmp.stx_dio_mem_align = 0; tmp.stx_dio_offset_align = 0; } match file.file_type() { FileType::File => tmp.stx_mode.insert(ModeType::S_IFREG), FileType::Dir => tmp.stx_mode.insert(ModeType::S_IFDIR), FileType::BlockDevice => tmp.stx_mode.insert(ModeType::S_IFBLK), FileType::CharDevice => tmp.stx_mode.insert(ModeType::S_IFCHR), FileType::SymLink => tmp.stx_mode.insert(ModeType::S_IFLNK), FileType::Socket => tmp.stx_mode.insert(ModeType::S_IFSOCK), FileType::Pipe => tmp.stx_mode.insert(ModeType::S_IFIFO), FileType::KvmDevice => tmp.stx_mode.insert(ModeType::S_IFCHR), FileType::FramebufferDevice => tmp.stx_mode.insert(ModeType::S_IFCHR), } writer.copy_one_to_user(&tmp, 0)?; Self::close(fd as usize).ok(); return Ok(0); } pub fn mknod( path: *const u8, mode: ModeType, dev_t: DeviceNumber, ) -> Result { let path = check_and_clone_cstr(path, Some(MAX_PATHLEN))?; let path = path.as_str().trim(); let inode: Result, SystemError> = ROOT_INODE().lookup_follow_symlink(path, VFS_MAX_FOLLOW_SYMLINK_TIMES); if inode.is_ok() { return Err(SystemError::EEXIST); } let (filename, parent_path) = rsplit_path(path); // 查找父目录 let parent_inode: Arc = ROOT_INODE() .lookup_follow_symlink(parent_path.unwrap_or("/"), VFS_MAX_FOLLOW_SYMLINK_TIMES)?; // 创建nod parent_inode.mknod(filename, mode, dev_t)?; return Ok(0); } pub fn writev(fd: i32, iov: usize, count: usize) -> Result { // IoVecs会进行用户态检验 let iovecs = unsafe { IoVecs::from_user(iov as *const IoVec, count, false) }?; let data = iovecs.gather(); Self::write(fd, &data) } pub fn readv(fd: i32, iov: usize, count: usize) -> Result { // IoVecs会进行用户态检验 let mut iovecs = unsafe { IoVecs::from_user(iov as *const IoVec, count, true) }?; let mut data = vec![0; iovecs.0.iter().map(|x| x.len()).sum()]; let len = Self::read(fd, &mut data)?; iovecs.scatter(&data[..len]); return Ok(len); } pub fn readlink_at( dirfd: i32, path: *const u8, user_buf: *mut u8, buf_size: usize, ) -> Result { let path = check_and_clone_cstr(path, Some(MAX_PATHLEN))?; let path = path.as_str().trim(); let mut user_buf = UserBufferWriter::new(user_buf, buf_size, true)?; let (inode, path) = user_path_at(&ProcessManager::current_pcb(), dirfd, path)?; let inode = inode.lookup(path.as_str())?; if inode.metadata()?.file_type != FileType::SymLink { return Err(SystemError::EINVAL); } let ubuf = user_buf.buffer::(0).unwrap(); let file = File::new(inode, FileMode::O_RDONLY)?; let len = file.read(buf_size, ubuf)?; return Ok(len); } pub fn readlink( path: *const u8, user_buf: *mut u8, buf_size: usize, ) -> Result { return Self::readlink_at(AtFlags::AT_FDCWD.bits(), path, user_buf, buf_size); } pub fn access(pathname: *const u8, mode: u32) -> Result { return do_faccessat( AtFlags::AT_FDCWD.bits(), pathname, ModeType::from_bits(mode).ok_or(SystemError::EINVAL)?, 0, ); } pub fn faccessat2( dirfd: i32, pathname: *const u8, mode: u32, flags: u32, ) -> Result { return do_faccessat( dirfd, pathname, ModeType::from_bits(mode).ok_or(SystemError::EINVAL)?, flags, ); } pub fn chmod(pathname: *const u8, mode: u32) -> Result { return do_fchmodat( AtFlags::AT_FDCWD.bits(), pathname, ModeType::from_bits(mode).ok_or(SystemError::EINVAL)?, ); } pub fn fchmodat(dirfd: i32, pathname: *const u8, mode: u32) -> Result { return do_fchmodat( dirfd, pathname, ModeType::from_bits(mode).ok_or(SystemError::EINVAL)?, ); } pub fn fchmod(fd: i32, mode: u32) -> Result { let _mode = ModeType::from_bits(mode).ok_or(SystemError::EINVAL)?; let binding = ProcessManager::current_pcb().fd_table(); let fd_table_guard = binding.read(); let _file = fd_table_guard .get_file_by_fd(fd) .ok_or(SystemError::EBADF)?; // fchmod没完全实现,因此不修改文件的权限 // todo: 实现fchmod kwarn!("fchmod not fully implemented"); return Ok(0); } /// #挂载文件系统 /// /// 用于挂载文件系统,目前仅支持ramfs挂载 /// /// ## 参数: /// /// - source 挂载设备(暂时不支持) /// - target 挂载目录 /// - filesystemtype 文件系统 /// - mountflags 挂载选项(暂未实现) /// - data 带数据挂载 /// /// ## 返回值 /// - Ok(0): 挂载成功 /// - Err(SystemError) :挂载过程中出错 pub fn mount( _source: *const u8, target: *const u8, filesystemtype: *const u8, _mountflags: usize, _data: *const c_void, ) -> Result { let target = user_access::check_and_clone_cstr(target, Some(MAX_PATHLEN))?; let filesystemtype = user_access::check_and_clone_cstr(filesystemtype, Some(MAX_PATHLEN))?; let filesystemtype = producefs!(FSMAKER, filesystemtype)?; return Vcore::do_mount(filesystemtype, target.to_string().as_str()); } // 想法:可以在VFS中实现一个文件系统分发器,流程如下: // 1. 接受从上方传来的文件类型字符串 // 2. 将传入值与启动时准备好的字符串数组逐个比较(probe) // 3. 直接在函数内调用构造方法并直接返回文件系统对象 } #[repr(C)] #[derive(Debug, Clone, Copy)] pub struct IoVec { /// 缓冲区的起始地址 pub iov_base: *mut u8, /// 缓冲区的长度 pub iov_len: usize, } /// 用于存储多个来自用户空间的IoVec /// /// 由于目前内核中的文件系统还不支持分散读写,所以暂时只支持将用户空间的IoVec聚合成一个缓冲区,然后进行操作。 /// TODO:支持分散读写 #[derive(Debug)] pub struct IoVecs(Vec<&'static mut [u8]>); impl IoVecs { /// 从用户空间的IoVec中构造IoVecs /// /// @param iov 用户空间的IoVec /// @param iovcnt 用户空间的IoVec的数量 /// @param readv 是否为readv系统调用 /// /// @return 构造成功返回IoVecs,否则返回错误码 pub unsafe fn from_user( iov: *const IoVec, iovcnt: usize, _readv: bool, ) -> Result { // 检查iov指针所在空间是否合法 verify_area( VirtAddr::new(iov as usize), iovcnt * core::mem::size_of::(), ) .map_err(|_| SystemError::EFAULT)?; // 将用户空间的IoVec转换为引用(注意:这里的引用是静态的,因为用户空间的IoVec不会被释放) let iovs: &[IoVec] = core::slice::from_raw_parts(iov, iovcnt); let mut slices: Vec<&mut [u8]> = vec![]; slices.reserve(iovs.len()); for iov in iovs.iter() { if iov.iov_len == 0 { continue; } verify_area( VirtAddr::new(iov.iov_base as usize), iovcnt * core::mem::size_of::(), ) .map_err(|_| SystemError::EFAULT)?; slices.push(core::slice::from_raw_parts_mut(iov.iov_base, iov.iov_len)); } return Ok(Self(slices)); } /// @brief 将IoVecs中的数据聚合到一个缓冲区中 /// /// @return 返回聚合后的缓冲区 pub fn gather(&self) -> Vec { let mut buf = Vec::new(); for slice in self.0.iter() { buf.extend_from_slice(slice); } return buf; } /// @brief 将给定的数据分散写入到IoVecs中 pub fn scatter(&mut self, data: &[u8]) { let mut data: &[u8] = data; for slice in self.0.iter_mut() { let len = core::cmp::min(slice.len(), data.len()); if len == 0 { continue; } slice[..len].copy_from_slice(&data[..len]); data = &data[len..]; } } /// @brief 创建与IoVecs等长的缓冲区 /// /// @param set_len 是否设置返回的Vec的len。 /// 如果为true,则返回的Vec的len为所有IoVec的长度之和; /// 否则返回的Vec的len为0,capacity为所有IoVec的长度之和. /// /// @return 返回创建的缓冲区 pub fn new_buf(&self, set_len: bool) -> Vec { let total_len: usize = self.0.iter().map(|slice| slice.len()).sum(); let mut buf: Vec = Vec::with_capacity(total_len); if set_len { buf.resize(total_len, 0); } return buf; } }