use core::{ arch::asm, intrinsics::unlikely, mem::ManuallyDrop, sync::atomic::{compiler_fence, Ordering}, }; use alloc::{ string::String, sync::{Arc, Weak}, vec::Vec, }; use kdepends::memoffset::offset_of; use x86::{controlregs::Cr4, segmentation::SegmentSelector}; use crate::{ arch::process::table::TSSManager, exception::InterruptArch, kerror, kwarn, libs::spinlock::SpinLockGuard, mm::{ percpu::{PerCpu, PerCpuVar}, VirtAddr, }, process::{ fork::{CloneFlags, KernelCloneArgs}, KernelStack, ProcessControlBlock, ProcessFlags, ProcessManager, SwitchResult, SWITCH_RESULT, }, syscall::{Syscall, SystemError}, }; use self::{ kthread::kernel_thread_bootstrap_stage1, syscall::ARCH_SET_FS, table::{switch_fs_and_gs, KERNEL_DS, USER_DS}, }; use super::{fpu::FpState, interrupt::TrapFrame, syscall::X86_64GSData, CurrentIrqArch}; mod c_adapter; pub mod kthread; pub mod syscall; pub mod table; extern "C" { /// 从中断返回 fn ret_from_intr(); } #[allow(dead_code)] #[repr(align(32768))] union InitProcUnion { /// 用于存放idle进程的内核栈 idle_stack: [u8; 32768], } #[link_section = ".data.init_proc_union"] #[no_mangle] static BSP_IDLE_STACK_SPACE: InitProcUnion = InitProcUnion { idle_stack: [0; 32768], }; /// PCB中与架构相关的信息 #[derive(Debug)] #[allow(dead_code)] pub struct ArchPCBInfo { rflags: usize, rbx: usize, r12: usize, r13: usize, r14: usize, r15: usize, rbp: usize, rsp: usize, rip: usize, cr2: usize, fsbase: usize, gsbase: usize, fs: SegmentSelector, gs: SegmentSelector, /// 存储PCB系统调用栈以及在syscall过程中暂存用户态rsp的结构体 gsdata: X86_64GSData, /// 浮点寄存器的状态 fp_state: Option, } #[allow(dead_code)] impl ArchPCBInfo { /// 创建一个新的ArchPCBInfo /// /// ## 参数 /// /// - `kstack`:内核栈的引用,如果为None,则不会设置rsp和rbp。如果为Some,则会设置rsp和rbp为内核栈的最高地址。 /// /// ## 返回值 /// /// 返回一个新的ArchPCBInfo pub fn new(kstack: &KernelStack) -> Self { let mut r = Self { rflags: 0, rbx: 0, r12: 0, r13: 0, r14: 0, r15: 0, rbp: 0, rsp: 0, rip: 0, cr2: 0, fsbase: 0, gsbase: 0, gsdata: X86_64GSData { kaddr: VirtAddr::new(0), uaddr: VirtAddr::new(0), }, fs: KERNEL_DS, gs: KERNEL_DS, fp_state: None, }; r.rsp = kstack.stack_max_address().data() - 8; r.rbp = kstack.stack_max_address().data(); return r; } pub fn set_stack(&mut self, stack: VirtAddr) { self.rsp = stack.data(); } pub fn set_stack_base(&mut self, stack_base: VirtAddr) { self.rbp = stack_base.data(); } pub fn rbp(&self) -> usize { self.rbp } pub unsafe fn push_to_stack(&mut self, value: usize) { self.rsp -= core::mem::size_of::(); *(self.rsp as *mut usize) = value; } pub unsafe fn pop_from_stack(&mut self) -> usize { let value = *(self.rsp as *const usize); self.rsp += core::mem::size_of::(); value } pub fn save_fp_state(&mut self) { if self.fp_state.is_none() { self.fp_state = Some(FpState::new()); } self.fp_state.as_mut().unwrap().save(); } pub fn restore_fp_state(&mut self) { if unlikely(self.fp_state.is_none()) { return; } self.fp_state.as_mut().unwrap().restore(); } /// 返回浮点寄存器结构体的副本 pub fn fp_state(&self) -> &Option { &self.fp_state } // 清空浮点寄存器 pub fn clear_fp_state(&mut self) { if unlikely(self.fp_state.is_none()) { kwarn!("fp_state is none"); return; } self.fp_state.as_mut().unwrap().clear(); } pub unsafe fn save_fsbase(&mut self) { if x86::controlregs::cr4().contains(Cr4::CR4_ENABLE_FSGSBASE) { self.fsbase = x86::current::segmentation::rdfsbase() as usize; } else { self.fsbase = x86::msr::rdmsr(x86::msr::IA32_FS_BASE) as usize; } } pub unsafe fn save_gsbase(&mut self) { if x86::controlregs::cr4().contains(Cr4::CR4_ENABLE_FSGSBASE) { self.gsbase = x86::current::segmentation::rdgsbase() as usize; } else { self.gsbase = x86::msr::rdmsr(x86::msr::IA32_GS_BASE) as usize; } } pub unsafe fn restore_fsbase(&mut self) { if x86::controlregs::cr4().contains(Cr4::CR4_ENABLE_FSGSBASE) { x86::current::segmentation::wrfsbase(self.fsbase as u64); } else { x86::msr::wrmsr(x86::msr::IA32_FS_BASE, self.fsbase as u64); } } pub unsafe fn restore_gsbase(&mut self) { if x86::controlregs::cr4().contains(Cr4::CR4_ENABLE_FSGSBASE) { x86::current::segmentation::wrgsbase(self.gsbase as u64); } else { x86::msr::wrmsr(x86::msr::IA32_GS_BASE, self.gsbase as u64); } } /// 将gsdata写入KernelGsbase寄存器 pub unsafe fn store_kernel_gsbase(&self) { x86::msr::wrmsr( x86::msr::IA32_KERNEL_GSBASE, &self.gsdata as *const X86_64GSData as u64, ); } /// ### 初始化系统调用栈,不得与PCB内核栈冲突(即传入的应该是一个新的栈,避免栈损坏) pub fn init_syscall_stack(&mut self, stack: &KernelStack) { self.gsdata.set_kstack(stack.stack_max_address() - 8); } pub fn fsbase(&self) -> usize { self.fsbase } pub fn gsbase(&self) -> usize { self.gsbase } pub fn cr2_mut(&mut self) -> &mut usize { &mut self.cr2 } pub fn fp_state_mut(&mut self) -> &mut Option { &mut self.fp_state } /// ### 克隆ArchPCBInfo,需要注意gsdata也是对应clone的 pub fn clone_all(&self) -> Self { Self { rflags: self.rflags, rbx: self.rbx, r12: self.r12, r13: self.r13, r14: self.r14, r15: self.r15, rbp: self.rbp, rsp: self.rsp, rip: self.rip, cr2: self.cr2, fsbase: self.fsbase, gsbase: self.gsbase, fs: self.fs.clone(), gs: self.gs.clone(), gsdata: self.gsdata.clone(), fp_state: self.fp_state, } } // ### 从另一个ArchPCBInfo处clone,gsdata会被保留 pub fn clone_from(&mut self, from: &Self) { let gsdata = self.gsdata.clone(); *self = from.clone_all(); self.gsdata = gsdata; } } impl ProcessControlBlock { /// 获取当前进程的pcb pub fn arch_current_pcb() -> Arc { // 获取栈指针 let ptr = VirtAddr::new(x86::current::registers::rsp() as usize); let stack_base = VirtAddr::new(ptr.data() & (!(KernelStack::ALIGN - 1))); // 从内核栈的最低地址处取出pcb的地址 let p = stack_base.data() as *const *const ProcessControlBlock; if unlikely((unsafe { *p }).is_null()) { kerror!("p={:p}", p); panic!("current_pcb is null"); } unsafe { // 为了防止内核栈的pcb weak 指针被释放,这里需要将其包装一下 let weak_wrapper: ManuallyDrop> = ManuallyDrop::new(Weak::from_raw(*p)); let new_arc: Arc = weak_wrapper.upgrade().unwrap(); return new_arc; } } } impl ProcessManager { pub fn arch_init() { { // 初始化进程切换结果 per cpu变量 let mut switch_res_vec: Vec = Vec::new(); for _ in 0..PerCpu::MAX_CPU_NUM { switch_res_vec.push(SwitchResult::new()); } unsafe { SWITCH_RESULT = Some(PerCpuVar::new(switch_res_vec).unwrap()); } } } /// fork的过程中复制线程 /// /// 由于这个过程与具体的架构相关,所以放在这里 pub fn copy_thread( current_pcb: &Arc, new_pcb: &Arc, clone_args: KernelCloneArgs, current_trapframe: &TrapFrame, ) -> Result<(), SystemError> { let clone_flags = clone_args.flags; let mut child_trapframe = current_trapframe.clone(); // 子进程的返回值为0 child_trapframe.set_return_value(0); // 设置子进程的栈基址(开始执行中断返回流程时的栈基址) let mut new_arch_guard = new_pcb.arch_info(); let kernel_stack_guard = new_pcb.kernel_stack(); // 设置子进程在内核态开始执行时的rsp、rbp new_arch_guard.set_stack_base(kernel_stack_guard.stack_max_address()); let trap_frame_vaddr: VirtAddr = kernel_stack_guard.stack_max_address() - core::mem::size_of::(); new_arch_guard.set_stack(trap_frame_vaddr); // 拷贝栈帧 unsafe { let usp = clone_args.stack; if usp != 0 { child_trapframe.rsp = usp as u64; } let trap_frame_ptr = trap_frame_vaddr.data() as *mut TrapFrame; *trap_frame_ptr = child_trapframe; } let current_arch_guard = current_pcb.arch_info_irqsave(); new_arch_guard.fsbase = current_arch_guard.fsbase; new_arch_guard.gsbase = current_arch_guard.gsbase; new_arch_guard.fs = current_arch_guard.fs; new_arch_guard.gs = current_arch_guard.gs; new_arch_guard.fp_state = current_arch_guard.fp_state.clone(); // 拷贝浮点寄存器的状态 if let Some(fp_state) = current_arch_guard.fp_state.as_ref() { new_arch_guard.fp_state = Some(*fp_state); } drop(current_arch_guard); // 设置返回地址(子进程开始执行的指令地址) if new_pcb.flags().contains(ProcessFlags::KTHREAD) { let kthread_bootstrap_stage1_func_addr = kernel_thread_bootstrap_stage1 as usize; new_arch_guard.rip = kthread_bootstrap_stage1_func_addr; } else { new_arch_guard.rip = ret_from_intr as usize; } // 设置tls if clone_flags.contains(CloneFlags::CLONE_SETTLS) { drop(new_arch_guard); Syscall::do_arch_prctl_64(new_pcb, ARCH_SET_FS, clone_args.tls, true)?; } return Ok(()); } /// 切换进程 /// /// ## 参数 /// /// - `prev`:上一个进程的pcb /// - `next`:下一个进程的pcb pub unsafe fn switch_process(prev: Arc, next: Arc) { assert!(CurrentIrqArch::is_irq_enabled() == false); // 保存浮点寄存器 prev.arch_info().save_fp_state(); // 切换浮点寄存器 next.arch_info().restore_fp_state(); // 切换fsbase prev.arch_info().save_fsbase(); next.arch_info().restore_fsbase(); // 切换gsbase Self::switch_gsbase(&prev, &next); // 切换地址空间 let next_addr_space = next.basic().user_vm().as_ref().unwrap().clone(); compiler_fence(Ordering::SeqCst); next_addr_space.read().user_mapper.utable.make_current(); drop(next_addr_space); compiler_fence(Ordering::SeqCst); // 切换内核栈 // 获取arch info的锁,并强制泄露其守卫(切换上下文后,在switch_finish_hook中会释放锁) let next_arch = SpinLockGuard::leak(next.arch_info()) as *mut ArchPCBInfo; let prev_arch = SpinLockGuard::leak(prev.arch_info()) as *mut ArchPCBInfo; (*prev_arch).rip = switch_back as usize; // 恢复当前的 preempt count*2 ProcessManager::current_pcb().preempt_enable(); ProcessManager::current_pcb().preempt_enable(); // 切换tss TSSManager::current_tss().set_rsp( x86::Ring::Ring0, next.kernel_stack().stack_max_address().data() as u64, ); SWITCH_RESULT.as_mut().unwrap().get_mut().prev_pcb = Some(prev); SWITCH_RESULT.as_mut().unwrap().get_mut().next_pcb = Some(next); // kdebug!("switch tss ok"); compiler_fence(Ordering::SeqCst); // 正式切换上下文 switch_to_inner(prev_arch, next_arch); } unsafe fn switch_gsbase(prev: &Arc, next: &Arc) { asm!("swapgs", options(nostack, preserves_flags)); prev.arch_info().save_gsbase(); next.arch_info().restore_gsbase(); // 将下一个进程的kstack写入kernel_gsbase next.arch_info().store_kernel_gsbase(); asm!("swapgs", options(nostack, preserves_flags)); } } /// 保存上下文,然后切换进程,接着jmp到`switch_finish_hook`钩子函数 #[naked] unsafe extern "sysv64" fn switch_to_inner(prev: *mut ArchPCBInfo, next: *mut ArchPCBInfo) { asm!( // As a quick reminder for those who are unfamiliar with the System V ABI (extern "C"): // // - the current parameters are passed in the registers `rdi`, `rsi`, // - we can modify scratch registers, e.g. rax // - we cannot change callee-preserved registers arbitrarily, e.g. rbx, which is why we // store them here in the first place. concat!(" // Save old registers, and load new ones mov [rdi + {off_rbx}], rbx mov rbx, [rsi + {off_rbx}] mov [rdi + {off_r12}], r12 mov r12, [rsi + {off_r12}] mov [rdi + {off_r13}], r13 mov r13, [rsi + {off_r13}] mov [rdi + {off_r14}], r14 mov r14, [rsi + {off_r14}] mov [rdi + {off_r15}], r15 mov r15, [rsi + {off_r15}] // switch segment registers (这些寄存器只能通过接下来的switch_hook的return来切换) mov [rdi + {off_fs}], fs mov [rdi + {off_gs}], gs // mov fs, [rsi + {off_fs}] // mov gs, [rsi + {off_gs}] push rbp push rax mov [rdi + {off_rbp}], rbp mov rbp, [rsi + {off_rbp}] mov [rdi + {off_rsp}], rsp mov rsp, [rsi + {off_rsp}] // // push RFLAGS (can only be modified via stack) pushfq // // pop RFLAGS into `self.rflags` pop QWORD PTR [rdi + {off_rflags}] // // push `next.rflags` push QWORD PTR [rsi + {off_rflags}] // // pop into RFLAGS popfq // push next rip to stack push QWORD PTR [rsi + {off_rip}] // When we return, we cannot even guarantee that the return address on the stack, points to // the calling function. Thus, we have to execute this Rust hook by // ourselves, which will unlock the contexts before the later switch. // Note that switch_finish_hook will be responsible for executing `ret`. jmp {switch_hook} "), off_rflags = const(offset_of!(ArchPCBInfo, rflags)), off_rbx = const(offset_of!(ArchPCBInfo, rbx)), off_r12 = const(offset_of!(ArchPCBInfo, r12)), off_r13 = const(offset_of!(ArchPCBInfo, r13)), off_r14 = const(offset_of!(ArchPCBInfo, r14)), off_rbp = const(offset_of!(ArchPCBInfo, rbp)), off_rsp = const(offset_of!(ArchPCBInfo, rsp)), off_r15 = const(offset_of!(ArchPCBInfo, r15)), off_rip = const(offset_of!(ArchPCBInfo, rip)), off_fs = const(offset_of!(ArchPCBInfo, fs)), off_gs = const(offset_of!(ArchPCBInfo, gs)), switch_hook = sym crate::process::switch_finish_hook, options(noreturn), ); } /// 从`switch_to_inner`返回后,执行这个函数 /// /// 也就是说,当进程再次被调度时,会从这里开始执行 #[inline(never)] unsafe extern "sysv64" fn switch_back() { asm!(concat!( " pop rax pop rbp " )) } pub unsafe fn arch_switch_to_user(path: String, argv: Vec, envp: Vec) -> ! { // 以下代码不能发生中断 CurrentIrqArch::interrupt_disable(); let current_pcb = ProcessManager::current_pcb(); let trap_frame_vaddr = VirtAddr::new( current_pcb.kernel_stack().stack_max_address().data() - core::mem::size_of::(), ); // kdebug!("trap_frame_vaddr: {:?}", trap_frame_vaddr); let new_rip = VirtAddr::new(ret_from_intr as usize); assert!( (x86::current::registers::rsp() as usize) < trap_frame_vaddr.data(), "arch_switch_to_user(): current_rsp >= fake trap frame vaddr, this may cause some illegal access to memory! rsp: {:#x}, trap_frame_vaddr: {:#x}", x86::current::registers::rsp() as usize, trap_frame_vaddr.data() ); let mut arch_guard = current_pcb.arch_info_irqsave(); arch_guard.rsp = trap_frame_vaddr.data(); arch_guard.fs = USER_DS; arch_guard.gs = USER_DS; // 将内核gs数据压进cpu arch_guard.store_kernel_gsbase(); switch_fs_and_gs( SegmentSelector::from_bits_truncate(arch_guard.fs.bits()), SegmentSelector::from_bits_truncate(arch_guard.gs.bits()), ); arch_guard.rip = new_rip.data(); drop(arch_guard); // 删除kthread的标志 current_pcb.flags().remove(ProcessFlags::KTHREAD); current_pcb.worker_private().take(); let mut trap_frame = TrapFrame::new(); compiler_fence(Ordering::SeqCst); Syscall::do_execve(path, argv, envp, &mut trap_frame).unwrap_or_else(|e| { panic!( "arch_switch_to_user(): pid: {pid:?}, Failed to execve: , error: {e:?}", pid = current_pcb.pid(), e = e ); }); compiler_fence(Ordering::SeqCst); // 重要!在这里之后,一定要保证上面的引用计数变量、动态申请的变量、锁的守卫都被drop了,否则可能导致内存安全问题! drop(current_pcb); compiler_fence(Ordering::SeqCst); ready_to_switch_to_user(trap_frame, trap_frame_vaddr.data(), new_rip.data()); } /// 由于需要依赖ret来切换到用户态,所以不能inline #[inline(never)] unsafe extern "sysv64" fn ready_to_switch_to_user( trap_frame: TrapFrame, trapframe_vaddr: usize, new_rip: usize, ) -> ! { *(trapframe_vaddr as *mut TrapFrame) = trap_frame; asm!( "swapgs", "mov rsp, {trapframe_vaddr}", "push {new_rip}", "ret", trapframe_vaddr = in(reg) trapframe_vaddr, new_rip = in(reg) new_rip ); unreachable!() }