#![allow(dead_code)] // 目前仅支持单主桥单Segment use super::pci_irq::{IrqType, PciIrqError}; use crate::arch::{PciArch, TraitPciArch}; use crate::include::bindings::bindings::{PAGE_2M_SIZE, VM_DONTCOPY, VM_IO}; use crate::libs::rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard}; use crate::mm::kernel_mapper::KernelMapper; use crate::mm::mmio_buddy::mmio_pool; use crate::mm::page::PageFlags; use crate::mm::{PhysAddr, VirtAddr}; use crate::{kdebug, kerror, kinfo, kwarn}; use alloc::vec::Vec; use alloc::{boxed::Box, collections::LinkedList}; use bitflags::bitflags; use core::{ convert::TryFrom, fmt::{self, Debug, Display, Formatter}, }; // PCI_DEVICE_LINKEDLIST 添加了读写锁的全局链表,里面存储了检索到的PCI设备结构体 // PCI_ROOT_0 Segment为0的全局PciRoot lazy_static! { pub static ref PCI_DEVICE_LINKEDLIST: PciDeviceLinkedList = PciDeviceLinkedList::new(); pub static ref PCI_ROOT_0: Option = { match PciRoot::new(0) { Ok(root) => Some(root), Err(err) => { kerror!("Pci_root init failed because of error: {}", err); None } } }; } /// PCI域地址 #[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd)] #[repr(transparent)] pub struct PciAddr(usize); impl PciAddr { #[inline(always)] pub const fn new(address: usize) -> Self { Self(address) } /// @brief 获取PCI域地址的值 #[inline(always)] pub fn data(&self) -> usize { self.0 } /// @brief 将PCI域地址加上一个偏移量 #[inline(always)] pub fn add(self, offset: usize) -> Self { Self(self.0 + offset) } /// @brief 判断PCI域地址是否按照指定要求对齐 #[inline(always)] pub fn check_aligned(&self, align: usize) -> bool { return self.0 & (align - 1) == 0; } } impl Debug for PciAddr { fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { write!(f, "PciAddr({:#x})", self.0) } } /// 添加了读写锁的链表,存储PCI设备结构体 pub struct PciDeviceLinkedList { list: RwLock>>, } impl PciDeviceLinkedList { /// @brief 初始化结构体 fn new() -> Self { PciDeviceLinkedList { list: RwLock::new(LinkedList::new()), } } /// @brief 获取可读的linkedlist(读锁守卫) /// @return RwLockReadGuard>> 读锁守卫 pub fn read(&self) -> RwLockReadGuard>> { self.list.read() } /// @brief 获取可写的linkedlist(写锁守卫) /// @return RwLockWriteGuard>> 写锁守卫 pub fn write(&self) -> RwLockWriteGuard>> { self.list.write() } /// @brief 获取链表中PCI结构体数目 /// @return usize 链表中PCI结构体数目 pub fn num(&self) -> usize { let list = self.list.read(); list.len() } /// @brief 添加Pci设备结构体到链表中 pub fn add(&self, device: Box) { let mut list = self.list.write(); list.push_back(device); } } /// @brief 在链表中寻找满足条件的PCI设备结构体并返回其可变引用 /// @param list 链表的写锁守卫 /// @param class_code 寄存器值 /// @param subclass 寄存器值,与class_code一起确定设备类型 /// @return Vec<&'a mut Box<(dyn PciDeviceStructure) 包含链表中所有满足条件的PCI结构体的可变引用的容器 pub fn get_pci_device_structure_mut<'a>( list: &'a mut RwLockWriteGuard<'_, LinkedList>>, class_code: u8, subclass: u8, ) -> Vec<&'a mut Box<(dyn PciDeviceStructure)>> { let mut result = Vec::new(); for box_pci_device_structure in list.iter_mut() { let common_header = (*box_pci_device_structure).common_header(); if (common_header.class_code == class_code) && (common_header.subclass == subclass) { result.push(box_pci_device_structure); } } result } /// @brief 在链表中寻找满足条件的PCI设备结构体并返回其不可变引用 /// @param list 链表的读锁守卫 /// @param class_code 寄存器值 /// @param subclass 寄存器值,与class_code一起确定设备类型 /// @return Vec<&'a Box<(dyn PciDeviceStructure) 包含链表中所有满足条件的PCI结构体的不可变引用的容器 pub fn get_pci_device_structure<'a>( list: &'a mut RwLockReadGuard<'_, LinkedList>>, class_code: u8, subclass: u8, ) -> Vec<&'a Box<(dyn PciDeviceStructure)>> { let mut result = Vec::new(); for box_pci_device_structure in list.iter() { let common_header = (*box_pci_device_structure).common_header(); if (common_header.class_code == class_code) && (common_header.subclass == subclass) { result.push(box_pci_device_structure); } } result } //Bar0寄存器的offset const BAR0_OFFSET: u8 = 0x10; //Status、Command寄存器的offset const STATUS_COMMAND_OFFSET: u8 = 0x04; /// ID for vendor-specific PCI capabilities.(Virtio Capabilities) pub const PCI_CAP_ID_VNDR: u8 = 0x09; pub const PCI_CAP_ID_MSI: u8 = 0x05; pub const PCI_CAP_ID_MSIX: u8 = 0x11; pub const PORT_PCI_CONFIG_ADDRESS: u16 = 0xcf8; pub const PORT_PCI_CONFIG_DATA: u16 = 0xcfc; // pci设备分组的id pub type SegmentGroupNumber = u16; //理论上最多支持65535个Segment_Group bitflags! { /// The status register in PCI configuration space. pub struct Status: u16 { // Bits 0-2 are reserved. /// The state of the device's INTx# signal. const INTERRUPT_STATUS = 1 << 3; /// The device has a linked list of capabilities. const CAPABILITIES_LIST = 1 << 4; /// The device is capabile of running at 66 MHz rather than 33 MHz. const MHZ_66_CAPABLE = 1 << 5; // Bit 6 is reserved. /// The device can accept fast back-to-back transactions not from the same agent. const FAST_BACK_TO_BACK_CAPABLE = 1 << 7; /// The bus agent observed a parity error (if parity error handling is enabled). const MASTER_DATA_PARITY_ERROR = 1 << 8; // Bits 9-10 are DEVSEL timing. /// A target device terminated a transaction with target-abort. const SIGNALED_TARGET_ABORT = 1 << 11; /// A master device transaction was terminated with target-abort. const RECEIVED_TARGET_ABORT = 1 << 12; /// A master device transaction was terminated with master-abort. const RECEIVED_MASTER_ABORT = 1 << 13; /// A device asserts SERR#. const SIGNALED_SYSTEM_ERROR = 1 << 14; /// The device detects a parity error, even if parity error handling is disabled. const DETECTED_PARITY_ERROR = 1 << 15; } } bitflags! { /// The command register in PCI configuration space. pub struct Command: u16 { /// The device can respond to I/O Space accesses. const IO_SPACE = 1 << 0; /// The device can respond to Memory Space accesses. const MEMORY_SPACE = 1 << 1; /// The device can behave as a bus master. const BUS_MASTER = 1 << 2; /// The device can monitor Special Cycle operations. const SPECIAL_CYCLES = 1 << 3; /// The device can generate the Memory Write and Invalidate command. const MEMORY_WRITE_AND_INVALIDATE_ENABLE = 1 << 4; /// The device will snoop palette register data. const VGA_PALETTE_SNOOP = 1 << 5; /// The device should take its normal action when a parity error is detected. const PARITY_ERROR_RESPONSE = 1 << 6; // Bit 7 is reserved. /// The SERR# driver is enabled. const SERR_ENABLE = 1 << 8; /// The device is allowed to generate fast back-to-back transactions. const FAST_BACK_TO_BACK_ENABLE = 1 << 9; /// Assertion of the device's INTx# signal is disabled. const INTERRUPT_DISABLE = 1 << 10; } } /// The type of a PCI device function header. /// 标头类型/设备类型 #[derive(Copy, Clone, Debug, Eq, PartialEq)] pub enum HeaderType { /// A normal PCI device. Standard, /// A PCI to PCI bridge. PciPciBridge, /// A PCI to CardBus bridge. PciCardbusBridge, /// Unrecognised header type. Unrecognised(u8), } /// u8到HeaderType的转换 impl From for HeaderType { fn from(value: u8) -> Self { match value { 0x00 => Self::Standard, 0x01 => Self::PciPciBridge, 0x02 => Self::PciCardbusBridge, _ => Self::Unrecognised(value), } } } /// Pci可能触发的各种错误 #[derive(Copy, Clone, Debug, Eq, PartialEq)] pub enum PciError { /// The device reported an invalid BAR type. InvalidBarType, CreateMmioError, InvalidBusDeviceFunction, SegmentNotFound, McfgTableNotFound, GetWrongHeader, UnrecognisedHeaderType, PciDeviceStructureTransformError, PciIrqError(PciIrqError), } ///实现PciError的Display trait,使其可以直接输出 impl Display for PciError { fn fmt(&self, f: &mut Formatter) -> fmt::Result { match self { Self::InvalidBarType => write!(f, "Invalid PCI BAR type."), Self::CreateMmioError => write!(f, "Error occurred while creating mmio."), Self::InvalidBusDeviceFunction => write!(f, "Found invalid BusDeviceFunction."), Self::SegmentNotFound => write!(f, "Target segment not found"), Self::McfgTableNotFound => write!(f, "ACPI MCFG Table not found"), Self::GetWrongHeader => write!(f, "GetWrongHeader with vendor id 0xffff"), Self::UnrecognisedHeaderType => write!(f, "Found device with unrecognised header type"), Self::PciDeviceStructureTransformError => { write!(f, "Found None When transform Pci device structure") } Self::PciIrqError(err) => write!(f, "Error occurred while setting irq :{:?}.", err), } } } /// trait类型Pci_Device_Structure表示pci设备,动态绑定三种具体设备类型:Pci_Device_Structure_General_Device、Pci_Device_Structure_Pci_to_Pci_Bridge、Pci_Device_Structure_Pci_to_Cardbus_Bridge pub trait PciDeviceStructure: Send + Sync { /// @brief 获取设备类型 /// @return HeaderType 设备类型 fn header_type(&self) -> HeaderType; /// @brief 当其为standard设备时返回&Pci_Device_Structure_General_Device,其余情况返回None #[inline(always)] fn as_standard_device(&self) -> Option<&PciDeviceStructureGeneralDevice> { None } /// @brief 当其为pci to pci bridge设备时返回&Pci_Device_Structure_Pci_to_Pci_Bridge,其余情况返回None #[inline(always)] fn as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge> { None } /// @brief 当其为pci to cardbus bridge设备时返回&Pci_Device_Structure_Pci_to_Cardbus_Bridge,其余情况返回None #[inline(always)] fn as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> { None } /// @brief 获取Pci设备共有的common_header /// @return 返回其不可变引用 fn common_header(&self) -> &PciDeviceStructureHeader; /// @brief 当其为standard设备时返回&mut Pci_Device_Structure_General_Device,其余情况返回None #[inline(always)] fn as_standard_device_mut(&mut self) -> Option<&mut PciDeviceStructureGeneralDevice> { None } /// @brief 当其为pci to pci bridge设备时返回&mut Pci_Device_Structure_Pci_to_Pci_Bridge,其余情况返回None #[inline(always)] fn as_pci_to_pci_bridge_device_mut(&mut self) -> Option<&mut PciDeviceStructurePciToPciBridge> { None } /// @brief 当其为pci to cardbus bridge设备时返回&mut Pci_Device_Structure_Pci_to_Cardbus_Bridge,其余情况返回None #[inline(always)] fn as_pci_to_carbus_bridge_device_mut( &mut self, ) -> Option<&mut PciDeviceStructurePciToCardbusBridge> { None } /// @brief 返回迭代器,遍历capabilities fn capabilities(&self) -> Option { None } /// @brief 获取Status、Command寄存器的值 fn status_command(&self) -> (Status, Command) { let common_header = self.common_header(); let status = Status::from_bits_truncate(common_header.status); let command = Command::from_bits_truncate(common_header.command); (status, command) } /// @brief 设置Command寄存器的值 fn set_command(&mut self, command: Command) { let common_header = self.common_header_mut(); let command = command.bits(); common_header.command = command; PciArch::write_config( &common_header.bus_device_function, STATUS_COMMAND_OFFSET, command as u32, ); } /// @brief 获取Pci设备共有的common_header /// @return 返回其可变引用 fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader; /// @brief 读取standard设备的bar寄存器,映射后将结果加入结构体的standard_device_bar变量 /// @return 只有standard设备才返回成功或者错误,其余返回None #[inline(always)] fn bar_ioremap(&mut self) -> Option> { None } /// @brief 获取PCI设备的bar寄存器的引用 /// @return #[inline(always)] fn bar(&mut self) -> Option<&PciStandardDeviceBar> { None } /// @brief 通过设置该pci设备的command fn enable_master(&mut self) { self.set_command(Command::IO_SPACE | Command::MEMORY_SPACE | Command::BUS_MASTER); } /// @brief 寻找设备的msix空间的offset fn msix_capability_offset(&self) -> Option { for capability in self.capabilities()? { if capability.id == PCI_CAP_ID_MSIX { return Some(capability.offset); } } None } /// @brief 寻找设备的msi空间的offset fn msi_capability_offset(&self) -> Option { for capability in self.capabilities()? { if capability.id == PCI_CAP_ID_MSI { return Some(capability.offset); } } None } /// @brief 返回结构体中的irq_type的可变引用 fn irq_type_mut(&mut self) -> Option<&mut IrqType>; /// @brief 返回结构体中的irq_vector的可变引用 fn irq_vector_mut(&mut self) -> Option<&mut Vec>; } /// Pci_Device_Structure_Header PCI设备结构体共有的头部 #[derive(Clone, Debug)] pub struct PciDeviceStructureHeader { // ==== busdevicefunction变量表示该结构体所处的位置 pub bus_device_function: BusDeviceFunction, pub vendor_id: u16, // 供应商ID 0xffff是一个无效值,在读取访问不存在的设备的配置空间寄存器时返回 pub device_id: u16, // 设备ID,标志特定设备 pub command: u16, // 提供对设备生成和响应pci周期的能力的控制 向该寄存器写入0时,设备与pci总线断开除配置空间访问以外的所有连接 pub status: u16, // 用于记录pci总线相关时间的状态信息寄存器 pub revision_id: u8, // 修订ID,指定特定设备的修订标志符 pub prog_if: u8, // 编程接口字节,一个只读寄存器,指定设备具有的寄存器级别的编程接口(如果有的话) pub subclass: u8, // 子类。指定设备执行的特定功能的只读寄存器 pub class_code: u8, // 类代码,一个只读寄存器,指定设备执行的功能类型 pub cache_line_size: u8, // 缓存线大小:以 32 位为单位指定系统缓存线大小。设备可以限制它可以支持的缓存线大小的数量,如果不支持的值写入该字段,设备将表现得好像写入了 0 值 pub latency_timer: u8, // 延迟计时器:以 PCI 总线时钟为单位指定延迟计时器。 pub header_type: u8, // 标头类型 a value of 0x0 specifies a general device, a value of 0x1 specifies a PCI-to-PCI bridge, and a value of 0x2 specifies a CardBus bridge. If bit 7 of this register is set, the device has multiple functions; otherwise, it is a single function device. pub bist: u8, // Represents that status and allows control of a devices BIST (built-in self test). // Here is the layout of the BIST register: // | bit7 | bit6 | Bits 5-4 | Bits 3-0 | // | BIST Capable | Start BIST | Reserved | Completion Code | // for more details, please visit https://wiki.osdev.org/PCI } /// Pci_Device_Structure_General_Device PCI标准设备结构体 #[derive(Clone, Debug)] pub struct PciDeviceStructureGeneralDevice { pub common_header: PciDeviceStructureHeader, // 中断结构体,包括legacy,msi,msix三种情况 pub irq_type: IrqType, // 使用的中断号的vec集合 pub irq_vector: Vec, pub standard_device_bar: PciStandardDeviceBar, pub cardbus_cis_pointer: u32, // 指向卡信息结构,供在 CardBus 和 PCI 之间共享芯片的设备使用。 pub subsystem_vendor_id: u16, pub subsystem_id: u16, pub expansion_rom_base_address: u32, pub capabilities_pointer: u8, pub reserved0: u8, pub reserved1: u16, pub reserved2: u32, pub interrupt_line: u8, // 指定设备的中断引脚连接到系统中断控制器的哪个输入,并由任何使用中断引脚的设备实现。对于 x86 架构,此寄存器对应于 PIC IRQ 编号 0-15(而不是 I/O APIC IRQ 编号),并且值0xFF定义为无连接。 pub interrupt_pin: u8, // 指定设备使用的中断引脚。其中值为0x1INTA#、0x2INTB#、0x3INTC#、0x4INTD#,0x0表示设备不使用中断引脚。 pub min_grant: u8, // 一个只读寄存器,用于指定设备所需的突发周期长度(以 1/4 微秒为单位)(假设时钟速率为 33 MHz) pub max_latency: u8, // 一个只读寄存器,指定设备需要多长时间访问一次 PCI 总线(以 1/4 微秒为单位)。 } impl PciDeviceStructure for PciDeviceStructureGeneralDevice { #[inline(always)] fn header_type(&self) -> HeaderType { HeaderType::Standard } #[inline(always)] fn as_standard_device(&self) -> Option<&PciDeviceStructureGeneralDevice> { Some(self) } #[inline(always)] fn as_standard_device_mut(&mut self) -> Option<&mut PciDeviceStructureGeneralDevice> { Some(self) } #[inline(always)] fn common_header(&self) -> &PciDeviceStructureHeader { &self.common_header } #[inline(always)] fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader { &mut self.common_header } fn capabilities(&self) -> Option { Some(CapabilityIterator { bus_device_function: self.common_header.bus_device_function, next_capability_offset: Some(self.capabilities_pointer), }) } fn bar_ioremap(&mut self) -> Option> { let common_header = &self.common_header; match pci_bar_init(common_header.bus_device_function) { Ok(bar) => { self.standard_device_bar = bar; Some(Ok(0)) } Err(e) => Some(Err(e)), } } fn bar(&mut self) -> Option<&PciStandardDeviceBar> { Some(&self.standard_device_bar) } #[inline(always)] fn irq_type_mut(&mut self) -> Option<&mut IrqType> { Some(&mut self.irq_type) } #[inline(always)] fn irq_vector_mut(&mut self) -> Option<&mut Vec> { Some(&mut self.irq_vector) } } /// Pci_Device_Structure_Pci_to_Pci_Bridge pci-to-pci桥设备结构体 #[derive(Clone, Debug)] pub struct PciDeviceStructurePciToPciBridge { pub common_header: PciDeviceStructureHeader, // 中断结构体,包括legacy,msi,msix三种情况 pub irq_type: IrqType, // 使用的中断号的vec集合 pub irq_vector: Vec, pub bar0: u32, pub bar1: u32, pub primary_bus_number: u8, pub secondary_bus_number: u8, pub subordinate_bus_number: u8, pub secondary_latency_timer: u8, pub io_base: u8, pub io_limit: u8, pub secondary_status: u16, pub memory_base: u16, pub memory_limit: u16, pub prefetchable_memory_base: u16, pub prefetchable_memory_limit: u16, pub prefetchable_base_upper_32_bits: u32, pub prefetchable_limit_upper_32_bits: u32, pub io_base_upper_16_bits: u16, pub io_limit_upper_16_bits: u16, pub capability_pointer: u8, pub reserved0: u8, pub reserved1: u16, pub expansion_rom_base_address: u32, pub interrupt_line: u8, pub interrupt_pin: u8, pub bridge_control: u16, } impl PciDeviceStructure for PciDeviceStructurePciToPciBridge { #[inline(always)] fn header_type(&self) -> HeaderType { HeaderType::PciPciBridge } #[inline(always)] fn as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge> { Some(self) } #[inline(always)] fn as_pci_to_pci_bridge_device_mut(&mut self) -> Option<&mut PciDeviceStructurePciToPciBridge> { Some(self) } #[inline(always)] fn common_header(&self) -> &PciDeviceStructureHeader { &self.common_header } #[inline(always)] fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader { &mut self.common_header } #[inline(always)] fn irq_type_mut(&mut self) -> Option<&mut IrqType> { Some(&mut self.irq_type) } #[inline(always)] fn irq_vector_mut(&mut self) -> Option<&mut Vec> { Some(&mut self.irq_vector) } } /// Pci_Device_Structure_Pci_to_Cardbus_Bridge Pci_to_Cardbus桥设备结构体 #[derive(Clone, Debug)] pub struct PciDeviceStructurePciToCardbusBridge { pub common_header: PciDeviceStructureHeader, pub cardbus_socket_ex_ca_base_address: u32, pub offset_of_capabilities_list: u8, pub reserved: u8, pub secondary_status: u16, pub pci_bus_number: u8, pub card_bus_bus_number: u8, pub subordinate_bus_number: u8, pub card_bus_latency_timer: u8, pub memory_base_address0: u32, pub memory_limit0: u32, pub memory_base_address1: u32, pub memory_limit1: u32, pub io_base_address0: u32, pub io_limit0: u32, pub io_base_address1: u32, pub io_limit1: u32, pub interrupt_line: u8, pub interrupt_pin: u8, pub bridge_control: u16, pub subsystem_device_id: u16, pub subsystem_vendor_id: u16, pub pc_card_legacy_mode_base_address_16_bit: u32, } impl PciDeviceStructure for PciDeviceStructurePciToCardbusBridge { #[inline(always)] fn header_type(&self) -> HeaderType { HeaderType::PciCardbusBridge } #[inline(always)] fn as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> { Some(&self) } #[inline(always)] fn as_pci_to_carbus_bridge_device_mut( &mut self, ) -> Option<&mut PciDeviceStructurePciToCardbusBridge> { Some(self) } #[inline(always)] fn common_header(&self) -> &PciDeviceStructureHeader { &self.common_header } #[inline(always)] fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader { &mut self.common_header } #[inline(always)] fn irq_type_mut(&mut self) -> Option<&mut IrqType> { None } #[inline(always)] fn irq_vector_mut(&mut self) -> Option<&mut Vec> { None } } /// 代表一个PCI segement greoup. #[derive(Copy, Clone, Debug, PartialEq)] pub struct PciRoot { pub physical_address_base: u64, //物理地址,acpi获取 pub mmio_base: Option<*mut u32>, //映射后的虚拟地址,为方便访问数据这里转化成指针 pub segement_group_number: SegmentGroupNumber, //segement greoup的id pub bus_begin: u8, //该分组中的最小bus pub bus_end: u8, //该分组中的最大bus } ///线程间共享需要,该结构体只需要在初始化时写入数据,无需读写锁保证线程安全 unsafe impl Send for PciRoot {} unsafe impl Sync for PciRoot {} ///实现PciRoot的Display trait,自定义输出 impl Display for PciRoot { fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { write!( f, "PCI Root with segement:{}, bus begin at {}, bus end at {}, physical address at {:#x},mapped at {:#x}", self.segement_group_number, self.bus_begin, self.bus_end, self.physical_address_base, self.mmio_base.unwrap() as usize ) } } impl PciRoot { /// @brief 初始化结构体,获取ecam root所在物理地址后map到虚拟地址,再将该虚拟地址加入mmio_base变量 /// @return 成功返回结果,错误返回错误类型 pub fn new(segment_group_number: SegmentGroupNumber) -> Result { let mut pci_root = PciArch::ecam_root(segment_group_number)?; pci_root.map()?; Ok(pci_root) } /// @brief 完成物理地址到虚拟地址的映射,并将虚拟地址加入mmio_base变量 /// @return 返回错误或Ok(0) fn map(&mut self) -> Result { //kdebug!("bus_begin={},bus_end={}", self.bus_begin,self.bus_end); let bus_number = (self.bus_end - self.bus_begin) as u32 + 1; let bus_number_double = (bus_number - 1) / 2 + 1; //一个bus占据1MB空间,计算全部bus占据空间相对于2MB空间的个数 let mut virtaddress: u64 = 0; let vaddr_ptr = &mut virtaddress as *mut u64; let mut virtsize: u64 = 0; let virtsize_ptr = &mut virtsize as *mut u64; let size = bus_number_double * PAGE_2M_SIZE; unsafe { if let Err(_) = mmio_pool().create_mmio( size as usize, (VM_IO | VM_DONTCOPY) as u64, vaddr_ptr, virtsize_ptr, ) { kerror!("Create mmio failed when initing ecam"); return Err(PciError::CreateMmioError); }; //kdebug!("virtaddress={:#x},virtsize={:#x}",virtaddress,virtsize); let vaddr = VirtAddr::new(virtaddress as usize); let paddr = PhysAddr::new(self.physical_address_base as usize); // kdebug!("pci root: map: vaddr={vaddr:?}, paddr={paddr:?}, size={size}"); let page_flags = PageFlags::mmio_flags(); let mut kernel_mapper = KernelMapper::lock(); // todo: 添加错误处理代码。因为内核映射器可能是只读的,所以可能会出错 assert!(kernel_mapper .map_phys_with_size(vaddr, paddr, size as usize, page_flags, true) .is_ok()); drop(kernel_mapper); } self.mmio_base = Some(virtaddress as *mut u32); Ok(0) } /// @brief 获得要操作的寄存器相对于mmio_offset的偏移量 /// @param bus_device_function 在同一个group中pci设备的唯一标识符 /// @param register_offset 寄存器在设备中的offset /// @return u32 要操作的寄存器相对于mmio_offset的偏移量 fn cam_offset(&self, bus_device_function: BusDeviceFunction, register_offset: u16) -> u32 { assert!(bus_device_function.valid()); let bdf = ((bus_device_function.bus - self.bus_begin) as u32) << 8 | (bus_device_function.device as u32) << 3 | bus_device_function.function as u32; let address = bdf << 12 | register_offset as u32; // Ensure that address is word-aligned. assert!(address & 0x3 == 0); address } /// @brief 通过bus_device_function和offset读取相应位置寄存器的值(32位) /// @param bus_device_function 在同一个group中pci设备的唯一标识符 /// @param register_offset 寄存器在设备中的offset /// @return u32 寄存器读值结果 pub fn read_config(&self, bus_device_function: BusDeviceFunction, register_offset: u16) -> u32 { let address = self.cam_offset(bus_device_function, register_offset); unsafe { // Right shift to convert from byte offset to word offset. (self.mmio_base.unwrap().add((address >> 2) as usize)).read_volatile() } } /// @brief 通过bus_device_function和offset写入相应位置寄存器值(32位) /// @param bus_device_function 在同一个group中pci设备的唯一标识符 /// @param register_offset 寄存器在设备中的offset /// @param data 要写入的值 pub fn write_config( &mut self, bus_device_function: BusDeviceFunction, register_offset: u16, data: u32, ) { let address = self.cam_offset(bus_device_function, register_offset); // Safe because both the `mmio_base` and the address offset are properly aligned, and the // resulting pointer is within the MMIO range of the CAM. unsafe { // Right shift to convert from byte offset to word offset. (self.mmio_base.unwrap().add((address >> 2) as usize)).write_volatile(data) } } /// @brief 返回迭代器,遍历pcie设备的external_capabilities pub fn external_capabilities( &self, bus_device_function: BusDeviceFunction, ) -> ExternalCapabilityIterator { ExternalCapabilityIterator { root: self, bus_device_function, next_capability_offset: Some(0x100), } } } /// Gets the capabilities 'pointer' for the device function, if any. /// @brief 获取第一个capability 的offset /// @param bus_device_function PCI设备的唯一标识 /// @return Option offset pub fn capabilities_offset(bus_device_function: BusDeviceFunction) -> Option { let result = PciArch::read_config(&bus_device_function, STATUS_COMMAND_OFFSET); let status: Status = Status::from_bits_truncate((result >> 16) as u16); if status.contains(Status::CAPABILITIES_LIST) { let cap_pointer = PciArch::read_config(&bus_device_function, 0x34) as u8 & 0xFC; Some(cap_pointer) } else { None } } /// @brief 读取pci设备头部 /// @param bus_device_function PCI设备的唯一标识 /// @param add_to_list 是否添加到链表 /// @return 返回的header(trait 类型) fn pci_read_header( bus_device_function: BusDeviceFunction, add_to_list: bool, ) -> Result, PciError> { // 先读取公共header let result = PciArch::read_config(&bus_device_function, 0x00); let vendor_id = result as u16; let device_id = (result >> 16) as u16; let result = PciArch::read_config(&bus_device_function, 0x04); let command = result as u16; let status = (result >> 16) as u16; let result = PciArch::read_config(&bus_device_function, 0x08); let revision_id = result as u8; let prog_if = (result >> 8) as u8; let subclass = (result >> 16) as u8; let class_code = (result >> 24) as u8; let result = PciArch::read_config(&bus_device_function, 0x0c); let cache_line_size = result as u8; let latency_timer = (result >> 8) as u8; let header_type = (result >> 16) as u8; let bist = (result >> 24) as u8; if vendor_id == 0xffff { return Err(PciError::GetWrongHeader); } let header = PciDeviceStructureHeader { bus_device_function, vendor_id, device_id, command, status, revision_id, prog_if, subclass, class_code, cache_line_size, latency_timer, header_type, bist, }; match HeaderType::from(header_type & 0x7f) { HeaderType::Standard => { let general_device = pci_read_general_device_header(header, &bus_device_function); let box_general_device = Box::new(general_device); let box_general_device_clone = box_general_device.clone(); if add_to_list { PCI_DEVICE_LINKEDLIST.add(box_general_device); } Ok(box_general_device_clone) } HeaderType::PciPciBridge => { let pci_to_pci_bridge = pci_read_pci_to_pci_bridge_header(header, &bus_device_function); let box_pci_to_pci_bridge = Box::new(pci_to_pci_bridge); let box_pci_to_pci_bridge_clone = box_pci_to_pci_bridge.clone(); if add_to_list { PCI_DEVICE_LINKEDLIST.add(box_pci_to_pci_bridge); } Ok(box_pci_to_pci_bridge_clone) } HeaderType::PciCardbusBridge => { let pci_cardbus_bridge = pci_read_pci_to_cardbus_bridge_header(header, &bus_device_function); let box_pci_cardbus_bridge = Box::new(pci_cardbus_bridge); let box_pci_cardbus_bridge_clone = box_pci_cardbus_bridge.clone(); if add_to_list { PCI_DEVICE_LINKEDLIST.add(box_pci_cardbus_bridge); } Ok(box_pci_cardbus_bridge_clone) } HeaderType::Unrecognised(_) => Err(PciError::UnrecognisedHeaderType), } } /// @brief 读取type为0x0的pci设备的header /// 本函数只应被 pci_read_header()调用 /// @param common_header 共有头部 /// @param bus_device_function PCI设备的唯一标识 /// @return Pci_Device_Structure_General_Device 标准设备头部 fn pci_read_general_device_header( common_header: PciDeviceStructureHeader, bus_device_function: &BusDeviceFunction, ) -> PciDeviceStructureGeneralDevice { let standard_device_bar = PciStandardDeviceBar::default(); let cardbus_cis_pointer = PciArch::read_config(bus_device_function, 0x28); let result = PciArch::read_config(bus_device_function, 0x2c); let subsystem_vendor_id = result as u16; let subsystem_id = (result >> 16) as u16; let expansion_rom_base_address = PciArch::read_config(bus_device_function, 0x30); let result = PciArch::read_config(bus_device_function, 0x34); let capabilities_pointer = result as u8; let reserved0 = (result >> 8) as u8; let reserved1 = (result >> 16) as u16; let reserved2 = PciArch::read_config(bus_device_function, 0x38); let result = PciArch::read_config(bus_device_function, 0x3c); let interrupt_line = result as u8; let interrupt_pin = (result >> 8) as u8; let min_grant = (result >> 16) as u8; let max_latency = (result >> 24) as u8; PciDeviceStructureGeneralDevice { common_header, irq_type: IrqType::Unused, irq_vector: Vec::new(), standard_device_bar, cardbus_cis_pointer, subsystem_vendor_id, subsystem_id, expansion_rom_base_address, capabilities_pointer, reserved0, reserved1, reserved2, interrupt_line, interrupt_pin, min_grant, max_latency, } } /// @brief 读取type为0x1的pci设备的header /// 本函数只应被 pci_read_header()调用 /// @param common_header 共有头部 /// @param bus_device_function PCI设备的唯一标识 /// @return Pci_Device_Structure_Pci_to_Pci_Bridge pci-to-pci 桥设备头部 fn pci_read_pci_to_pci_bridge_header( common_header: PciDeviceStructureHeader, bus_device_function: &BusDeviceFunction, ) -> PciDeviceStructurePciToPciBridge { let bar0 = PciArch::read_config(bus_device_function, 0x10); let bar1 = PciArch::read_config(bus_device_function, 0x14); let result = PciArch::read_config(bus_device_function, 0x18); let primary_bus_number = result as u8; let secondary_bus_number = (result >> 8) as u8; let subordinate_bus_number = (result >> 16) as u8; let secondary_latency_timer = (result >> 24) as u8; let result = PciArch::read_config(bus_device_function, 0x1c); let io_base = result as u8; let io_limit = (result >> 8) as u8; let secondary_status = (result >> 16) as u16; let result = PciArch::read_config(bus_device_function, 0x20); let memory_base = result as u16; let memory_limit = (result >> 16) as u16; let result = PciArch::read_config(bus_device_function, 0x24); let prefetchable_memory_base = result as u16; let prefetchable_memory_limit = (result >> 16) as u16; let prefetchable_base_upper_32_bits = PciArch::read_config(bus_device_function, 0x28); let prefetchable_limit_upper_32_bits = PciArch::read_config(bus_device_function, 0x2c); let result = PciArch::read_config(bus_device_function, 0x30); let io_base_upper_16_bits = result as u16; let io_limit_upper_16_bits = (result >> 16) as u16; let result = PciArch::read_config(bus_device_function, 0x34); let capability_pointer = result as u8; let reserved0 = (result >> 8) as u8; let reserved1 = (result >> 16) as u16; let expansion_rom_base_address = PciArch::read_config(bus_device_function, 0x38); let result = PciArch::read_config(bus_device_function, 0x3c); let interrupt_line = result as u8; let interrupt_pin = (result >> 8) as u8; let bridge_control = (result >> 16) as u16; PciDeviceStructurePciToPciBridge { common_header, irq_type: IrqType::Unused, irq_vector: Vec::new(), bar0, bar1, primary_bus_number, secondary_bus_number, subordinate_bus_number, secondary_latency_timer, io_base, io_limit, secondary_status, memory_base, memory_limit, prefetchable_memory_base, prefetchable_memory_limit, prefetchable_base_upper_32_bits, prefetchable_limit_upper_32_bits, io_base_upper_16_bits, io_limit_upper_16_bits, capability_pointer, reserved0, reserved1, expansion_rom_base_address, interrupt_line, interrupt_pin, bridge_control, } } /// @brief 读取type为0x2的pci设备的header /// 本函数只应被 pci_read_header()调用 /// @param common_header 共有头部 /// @param bus_device_function PCI设备的唯一标识 /// @return Pci_Device_Structure_Pci_to_Cardbus_Bridge pci-to-cardbus 桥设备头部 fn pci_read_pci_to_cardbus_bridge_header( common_header: PciDeviceStructureHeader, busdevicefunction: &BusDeviceFunction, ) -> PciDeviceStructurePciToCardbusBridge { let cardbus_socket_ex_ca_base_address = PciArch::read_config(busdevicefunction, 0x10); let result = PciArch::read_config(busdevicefunction, 0x14); let offset_of_capabilities_list = result as u8; let reserved = (result >> 8) as u8; let secondary_status = (result >> 16) as u16; let result = PciArch::read_config(busdevicefunction, 0x18); let pci_bus_number = result as u8; let card_bus_bus_number = (result >> 8) as u8; let subordinate_bus_number = (result >> 16) as u8; let card_bus_latency_timer = (result >> 24) as u8; let memory_base_address0 = PciArch::read_config(busdevicefunction, 0x1c); let memory_limit0 = PciArch::read_config(busdevicefunction, 0x20); let memory_base_address1 = PciArch::read_config(busdevicefunction, 0x24); let memory_limit1 = PciArch::read_config(busdevicefunction, 0x28); let io_base_address0 = PciArch::read_config(busdevicefunction, 0x2c); let io_limit0 = PciArch::read_config(busdevicefunction, 0x30); let io_base_address1 = PciArch::read_config(busdevicefunction, 0x34); let io_limit1 = PciArch::read_config(busdevicefunction, 0x38); let result = PciArch::read_config(busdevicefunction, 0x3c); let interrupt_line = result as u8; let interrupt_pin = (result >> 8) as u8; let bridge_control = (result >> 16) as u16; let result = PciArch::read_config(busdevicefunction, 0x40); let subsystem_device_id = result as u16; let subsystem_vendor_id = (result >> 16) as u16; let pc_card_legacy_mode_base_address_16_bit = PciArch::read_config(busdevicefunction, 0x44); PciDeviceStructurePciToCardbusBridge { common_header, cardbus_socket_ex_ca_base_address, offset_of_capabilities_list, reserved, secondary_status, pci_bus_number, card_bus_bus_number, subordinate_bus_number, card_bus_latency_timer, memory_base_address0, memory_limit0, memory_base_address1, memory_limit1, io_base_address0, io_limit0, io_base_address1, io_limit1, interrupt_line, interrupt_pin, bridge_control, subsystem_device_id, subsystem_vendor_id, pc_card_legacy_mode_base_address_16_bit, } } /// @brief 检查所有bus上的设备并将其加入链表 /// @return 成功返回ok(),失败返回失败原因 fn pci_check_all_buses() -> Result { kinfo!("Checking all devices in PCI bus..."); let busdevicefunction = BusDeviceFunction { bus: 0, device: 0, function: 0, }; let header = pci_read_header(busdevicefunction, false)?; let common_header = header.common_header(); pci_check_bus(0)?; if common_header.header_type & 0x80 != 0 { for function in 1..8 { pci_check_bus(function)?; } } Ok(0) } /// @brief 检查特定设备并将其加入链表 /// @return 成功返回ok(),失败返回失败原因 fn pci_check_function(busdevicefunction: BusDeviceFunction) -> Result { //kdebug!("PCI check function {}", busdevicefunction.function); let header = match pci_read_header(busdevicefunction, true) { Ok(header) => header, Err(PciError::GetWrongHeader) => { return Ok(255); } Err(e) => { return Err(e); } }; let common_header = header.common_header(); if (common_header.class_code == 0x06) && (common_header.subclass == 0x04 || common_header.subclass == 0x09) { let pci_to_pci_bridge = header .as_pci_to_pci_bridge_device() .ok_or(PciError::PciDeviceStructureTransformError)?; let secondary_bus = pci_to_pci_bridge.secondary_bus_number; pci_check_bus(secondary_bus)?; } Ok(0) } /// @brief 检查device上的设备并将其加入链表 /// @return 成功返回ok(),失败返回失败原因 fn pci_check_device(bus: u8, device: u8) -> Result { //kdebug!("PCI check device {}", device); let busdevicefunction = BusDeviceFunction { bus, device, function: 0, }; let header = match pci_read_header(busdevicefunction, false) { Ok(header) => header, Err(PciError::GetWrongHeader) => { //设备不存在,直接返回即可,不用终止遍历 return Ok(255); } Err(e) => { return Err(e); } }; pci_check_function(busdevicefunction)?; let common_header = header.common_header(); if common_header.header_type & 0x80 != 0 { kdebug!( "Detected multi func device in bus{},device{}", busdevicefunction.bus, busdevicefunction.device ); // 这是一个多function的设备,因此查询剩余的function for function in 1..8 { let busdevicefunction = BusDeviceFunction { bus, device, function, }; pci_check_function(busdevicefunction)?; } } Ok(0) } /// @brief 检查该bus上的设备并将其加入链表 /// @return 成功返回ok(),失败返回失败原因 fn pci_check_bus(bus: u8) -> Result { //kdebug!("PCI check bus {}", bus); for device in 0..32 { pci_check_device(bus, device)?; } Ok(0) } /// @brief pci初始化函数(for c) #[no_mangle] pub extern "C" fn rs_pci_init() { pci_init(); if PCI_ROOT_0.is_some() { kdebug!("{}", PCI_ROOT_0.unwrap()); //以下为ecam的读取寄存器值测试,经测试可正常读取 // let bus_device_function = BusDeviceFunction { // bus: 0, // device: 2, // function: 0, // }; // kdebug!( // "Ecam read virtio-net device status={:#x}", // (PCI_ROOT_0.unwrap().read_config(bus_device_function, 4)>>16) as u16 // ); } } /// @brief pci初始化函数 pub fn pci_init() { kinfo!("Initializing PCI bus..."); if let Err(e) = pci_check_all_buses() { kerror!("pci init failed when checking bus because of error: {}", e); return; } kinfo!( "Total pci device and function num = {}", PCI_DEVICE_LINKEDLIST.num() ); let list = PCI_DEVICE_LINKEDLIST.read(); for box_pci_device in list.iter() { let common_header = box_pci_device.common_header(); match box_pci_device.header_type() { HeaderType::Standard if common_header.status & 0x10 != 0 => { kinfo!("Found pci standard device with class code ={} subclass={} status={:#x} cap_pointer={:#x} vendor={:#x}, device id={:#x},bdf={}", common_header.class_code, common_header.subclass, common_header.status, box_pci_device.as_standard_device().unwrap().capabilities_pointer,common_header.vendor_id, common_header.device_id,common_header.bus_device_function); } HeaderType::Standard => { kinfo!( "Found pci standard device with class code ={} subclass={} status={:#x} ", common_header.class_code, common_header.subclass, common_header.status ); } HeaderType::PciPciBridge if common_header.status & 0x10 != 0 => { kinfo!("Found pci-to-pci bridge device with class code ={} subclass={} status={:#x} cap_pointer={:#x}", common_header.class_code, common_header.subclass, common_header.status, box_pci_device.as_standard_device().unwrap().capabilities_pointer); } HeaderType::PciPciBridge => { kinfo!( "Found pci-to-pci bridge device with class code ={} subclass={} status={:#x} ", common_header.class_code, common_header.subclass, common_header.status ); } HeaderType::PciCardbusBridge => { kinfo!( "Found pcicardbus bridge device with class code ={} subclass={} status={:#x} ", common_header.class_code, common_header.subclass, common_header.status ); } HeaderType::Unrecognised(_) => {} } } kinfo!("PCI bus initialized."); } /// An identifier for a PCI bus, device and function. /// PCI设备的唯一标识 #[derive(Copy, Clone, Debug, Eq, PartialEq)] pub struct BusDeviceFunction { /// The PCI bus number, between 0 and 255. pub bus: u8, /// The device number on the bus, between 0 and 31. pub device: u8, /// The function number of the device, between 0 and 7. pub function: u8, } impl BusDeviceFunction { /// Returns whether the device and function numbers are valid, i.e. the device is between 0 and ///@brief 检测BusDeviceFunction实例是否有效 ///@param self ///@return bool 是否有效 #[allow(dead_code)] pub fn valid(&self) -> bool { self.device < 32 && self.function < 8 } } ///实现BusDeviceFunction的Display trait,使其可以直接输出 impl Display for BusDeviceFunction { fn fmt(&self, f: &mut Formatter) -> fmt::Result { write!( f, "bus {} device {} function{}", self.bus, self.device, self.function ) } } /// The location allowed for a memory BAR. /// memory BAR的三种情况 #[derive(Copy, Clone, Debug, Eq, PartialEq)] pub enum MemoryBarType { /// The BAR has a 32-bit address and can be mapped anywhere in 32-bit address space. Width32, /// The BAR must be mapped below 1MiB. Below1MiB, /// The BAR has a 64-bit address and can be mapped anywhere in 64-bit address space. Width64, } ///实现MemoryBarType与u8的类型转换 impl From for u8 { fn from(bar_type: MemoryBarType) -> Self { match bar_type { MemoryBarType::Width32 => 0, MemoryBarType::Below1MiB => 1, MemoryBarType::Width64 => 2, } } } ///实现MemoryBarType与u8的类型转换 impl TryFrom for MemoryBarType { type Error = PciError; fn try_from(value: u8) -> Result { match value { 0 => Ok(Self::Width32), 1 => Ok(Self::Below1MiB), 2 => Ok(Self::Width64), _ => Err(PciError::InvalidBarType), } } } /// Information about a PCI Base Address Register. /// BAR的三种类型 Memory/IO/Unused #[derive(Clone, Debug, Eq, PartialEq)] pub enum BarInfo { /// The BAR is for a memory region. Memory { /// The size of the BAR address and where it can be located. address_type: MemoryBarType, /// If true, then reading from the region doesn't have side effects. The CPU may cache reads /// and merge repeated stores. prefetchable: bool, /// The memory address, always 16-byte aligned. address: u64, /// The size of the BAR in bytes. size: u32, /// The virtaddress for a memory bar(mapped). virtaddress: u64, }, /// The BAR is for an I/O region. IO { /// The I/O address, always 4-byte aligned. address: u32, /// The size of the BAR in bytes. size: u32, }, Unused, } impl BarInfo { /// Returns the address and size of this BAR if it is a memory bar, or `None` if it is an IO /// BAR. ///@brief 得到某个bar的memory_address与size(前提是他的类型为Memory Bar) ///@param self ///@return Option<(u64, u32) 是Memory Bar返回内存地址与大小,不是则返回None pub fn memory_address_size(&self) -> Option<(u64, u32)> { if let Self::Memory { address, size, .. } = self { Some((*address, *size)) } else { None } } ///@brief 得到某个bar的virtaddress(前提是他的类型为Memory Bar) ///@param self ///@return Option<(u64) 是Memory Bar返回映射的虚拟地址,不是则返回None pub fn virtual_address(&self) -> Option { if let Self::Memory { virtaddress, .. } = self { Some(*virtaddress) } else { None } } } ///实现BarInfo的Display trait,自定义输出 impl Display for BarInfo { fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { match self { Self::Memory { address_type, prefetchable, address, size, virtaddress, } => write!( f, "Memory space at {:#010x}, size {}, type {:?}, prefetchable {},mapped at {:#x}", address, size, address_type, prefetchable, virtaddress ), Self::IO { address, size } => { write!(f, "I/O space at {:#010x}, size {}", address, size) } Self::Unused => { write!(f, "Unused bar") } } } } // todo 增加对桥的bar的支持 pub trait PciDeviceBar {} ///一个普通PCI设备(非桥)有6个BAR寄存器,PciStandardDeviceBar存储其全部信息 #[derive(Clone, Debug, Eq, PartialEq)] pub struct PciStandardDeviceBar { bar0: BarInfo, bar1: BarInfo, bar2: BarInfo, bar3: BarInfo, bar4: BarInfo, bar5: BarInfo, } impl PciStandardDeviceBar { ///@brief 得到某个bar的barinfo ///@param self ,bar_index(0-5) ///@return Result<&BarInfo, PciError> bar_index在0-5则返回对应的bar_info结构体,超出范围则返回错误 pub fn get_bar(&self, bar_index: u8) -> Result<&BarInfo, PciError> { match bar_index { 0 => Ok(&self.bar0), 1 => Ok(&self.bar1), 2 => Ok(&self.bar2), 3 => Ok(&self.bar3), 4 => Ok(&self.bar4), 5 => Ok(&self.bar5), _ => Err(PciError::InvalidBarType), } } } ///实现PciStandardDeviceBar的Display trait,使其可以直接输出 impl Display for PciStandardDeviceBar { fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { write!( f, "\r\nBar0:{}\r\n Bar1:{}\r\n Bar2:{}\r\n Bar3:{}\r\nBar4:{}\r\nBar5:{}", self.bar0, self.bar1, self.bar2, self.bar3, self.bar4, self.bar5 ) } } ///实现PciStandardDeviceBar的Default trait,使其可以简单初始化 impl Default for PciStandardDeviceBar { fn default() -> Self { PciStandardDeviceBar { bar0: BarInfo::Unused, bar1: BarInfo::Unused, bar2: BarInfo::Unused, bar3: BarInfo::Unused, bar4: BarInfo::Unused, bar5: BarInfo::Unused, } } } ///@brief 将某个pci设备的bar寄存器读取值后映射到虚拟地址 ///@param self ,bus_device_function PCI设备的唯一标识符 ///@return Result 成功则返回对应的PciStandardDeviceBar结构体,失败则返回错误类型 pub fn pci_bar_init( bus_device_function: BusDeviceFunction, ) -> Result { let mut device_bar: PciStandardDeviceBar = PciStandardDeviceBar::default(); let mut bar_index_ignore: u8 = 255; for bar_index in 0..6 { if bar_index == bar_index_ignore { continue; } let bar_info; let mut virtaddress: u64 = 0; let bar_orig = PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index); PciArch::write_config( &bus_device_function, BAR0_OFFSET + 4 * bar_index, 0xffffffff, ); let size_mask = PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index); // A wrapping add is necessary to correctly handle the case of unused BARs, which read back // as 0, and should be treated as size 0. let size = (!(size_mask & 0xfffffff0)).wrapping_add(1); //kdebug!("bar_orig:{:#x},size: {:#x}", bar_orig,size); // Restore the original value. PciArch::write_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index, bar_orig); if size == 0 { continue; } if bar_orig & 0x00000001 == 0x00000001 { // I/O space let address = bar_orig & 0xfffffffc; bar_info = BarInfo::IO { address, size }; } else { // Memory space let mut address = u64::from(bar_orig & 0xfffffff0); let prefetchable = bar_orig & 0x00000008 != 0; let address_type = MemoryBarType::try_from(((bar_orig & 0x00000006) >> 1) as u8)?; if address_type == MemoryBarType::Width64 { if bar_index >= 5 { return Err(PciError::InvalidBarType); } let address_top = PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * (bar_index + 1)); address |= u64::from(address_top) << 32; bar_index_ignore = bar_index + 1; //下个bar跳过,因为64位的memory bar覆盖了两个bar } let pci_address = PciAddr::new(address as usize); address = PciArch::address_pci_to_physical(pci_address) as u64; //PCI总线域物理地址转换为存储器域物理地址 unsafe { let vaddr_ptr = &mut virtaddress as *mut u64; let mut virtsize: u64 = 0; let virtsize_ptr = &mut virtsize as *mut u64; let size_want = size as usize; if let Err(_) = mmio_pool().create_mmio( size_want, (VM_IO | VM_DONTCOPY) as u64, vaddr_ptr, virtsize_ptr, ) { kerror!("Create mmio failed when initing pci bar"); return Err(PciError::CreateMmioError); }; //kdebug!("virtaddress={:#x},virtsize={:#x}",virtaddress,virtsize); let vaddr = VirtAddr::new(virtaddress as usize); let paddr = PhysAddr::new(address as usize); let page_flags = PageFlags::new() .set_write(true) .set_execute(true) .set_page_cache_disable(true) .set_page_write_through(true); kdebug!("Pci bar init: vaddr={vaddr:?}, paddr={paddr:?}, size_want={size_want}, page_flags={page_flags:?}"); let mut kernel_mapper = KernelMapper::lock(); // todo: 添加错误处理代码。因为内核映射器可能是只读的,所以可能会出错 assert!(kernel_mapper .map_phys_with_size(vaddr, paddr, size_want, page_flags, true) .is_ok()); drop(kernel_mapper); } bar_info = BarInfo::Memory { address_type, prefetchable, address, size, virtaddress, }; } match bar_index { 0 => { device_bar.bar0 = bar_info; } 1 => { device_bar.bar1 = bar_info; } 2 => { device_bar.bar2 = bar_info; } 3 => { device_bar.bar3 = bar_info; } 4 => { device_bar.bar4 = bar_info; } 5 => { device_bar.bar5 = bar_info; } _ => {} } } kdebug!("pci_device_bar:{}", device_bar); return Ok(device_bar); } /// Information about a PCI device capability. /// PCI设备的capability的信息 #[derive(Debug, Copy, Clone, Eq, PartialEq)] pub struct CapabilityInfo { /// The offset of the capability in the PCI configuration space of the device function. pub offset: u8, /// The ID of the capability. pub id: u8, /// The third and fourth bytes of the capability, to save reading them again. pub private_header: u16, } /// Iterator over capabilities for a device. /// 创建迭代器以遍历PCI设备的capability #[derive(Debug)] pub struct CapabilityIterator { pub bus_device_function: BusDeviceFunction, pub next_capability_offset: Option, } impl Iterator for CapabilityIterator { type Item = CapabilityInfo; fn next(&mut self) -> Option { let offset = self.next_capability_offset?; // Read the first 4 bytes of the capability. let capability_header = PciArch::read_config(&self.bus_device_function, offset); let id = capability_header as u8; let next_offset = (capability_header >> 8) as u8; let private_header = (capability_header >> 16) as u16; self.next_capability_offset = if next_offset == 0 { None } else if next_offset < 64 || next_offset & 0x3 != 0 { kwarn!("Invalid next capability offset {:#04x}", next_offset); None } else { Some(next_offset) }; Some(CapabilityInfo { offset, id, private_header, }) } } /// Information about a PCIe device capability. /// PCIe设备的external capability的信息 #[derive(Debug, Copy, Clone, Eq, PartialEq)] pub struct ExternalCapabilityInfo { /// The offset of the capability in the PCI configuration space of the device function. pub offset: u16, /// The ID of the capability. pub id: u16, /// The third and fourth bytes of the capability, to save reading them again. pub capability_version: u8, } /// Iterator over capabilities for a device. /// 创建迭代器以遍历PCIe设备的external capability #[derive(Debug)] pub struct ExternalCapabilityIterator<'a> { pub root: &'a PciRoot, pub bus_device_function: BusDeviceFunction, pub next_capability_offset: Option, } impl<'a> Iterator for ExternalCapabilityIterator<'a> { type Item = ExternalCapabilityInfo; fn next(&mut self) -> Option { let offset = self.next_capability_offset?; // Read the first 4 bytes of the capability. let capability_header = self.root.read_config(self.bus_device_function, offset); let id = capability_header as u16; let next_offset = (capability_header >> 20) as u16; let capability_version = ((capability_header >> 16) & 0xf) as u8; self.next_capability_offset = if next_offset == 0 { None } else if next_offset < 0x100 || next_offset & 0x3 != 0 { kwarn!("Invalid next capability offset {:#04x}", next_offset); None } else { Some(next_offset) }; Some(ExternalCapabilityInfo { offset, id, capability_version, }) } }