#include "acpi.h" #include #include #include #include #include #define acpi_get_RSDT_entry_vaddr(phys_addr) (acpi_description_header_base + (phys_addr)-acpi_RSDT_entry_phys_base) // 获取RSDT entry的虚拟地址 // #define acpi_get_XSDT_entry_vaddr(phys_addr) (ACPI_DESCRIPTION_HEDERS_BASE + (phys_addr)-acpi_XSDT_entry_phys_base) // 获取XSDT entry的虚拟地址 static struct acpi_RSDP_t *rsdpv1; static struct acpi_RSDP_2_t *rsdpv2; static struct acpi_RSDT_Structure_t *rsdt; static struct acpi_XSDT_Structure_t *xsdt; static struct multiboot_tag_old_acpi_t old_acpi; static struct multiboot_tag_new_acpi_t new_acpi; static ul acpi_RSDT_offset = 0; static ul acpi_XSDT_offset = 0; static uint acpi_RSDT_Entry_num = 0; static uint acpi_XSDT_Entry_num = 0; static ul acpi_RSDT_entry_phys_base = 0; // RSDT中的第一个entry所在物理页的基地址 static uint64_t acpi_madt_vaddr = 0; // MADT的虚拟地址 static uint64_t acpi_rsdt_virt_addr_base = 0; // RSDT的虚拟地址 static uint64_t acpi_description_header_base = 0; // RSDT中的第一个entry所在虚拟地址 // static ul acpi_XSDT_entry_phys_base = 0; // XSDT中的第一个entry所在物理页的基地址 /** * @brief 迭代器,用于迭代描述符头(位于ACPI标准文件的Table 5-29) * @param _fun 迭代操作调用的函数 * @param _data 数据 */ void acpi_iter_SDT(bool (*_fun)(const struct acpi_system_description_table_header_t *, void *), void *_data) { struct acpi_system_description_table_header_t *sdt_header; if (acpi_use_xsdt) { ul *ent = &(xsdt->Entry); for (int i = 0; i < acpi_XSDT_Entry_num; ++i) { mm_map_phys_addr(acpi_description_header_base + PAGE_2M_SIZE * i, (*(ent + i)) & PAGE_2M_MASK, PAGE_2M_SIZE, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD, false); sdt_header = (struct acpi_system_description_table_header_t *)((ul)(acpi_description_header_base + PAGE_2M_SIZE * i)); if (_fun(sdt_header, _data) == true) return; } } else { uint *ent = &(rsdt->Entry); for (int i = 0; i < acpi_RSDT_Entry_num; ++i) { sdt_header = (struct acpi_system_description_table_header_t *)(acpi_get_RSDT_entry_vaddr((ul)(*(ent + i)))); if (_fun(sdt_header, _data) == true) return; } } return; } /** * @brief 获取MADT信息 Multiple APIC Description Table * * @param _iter_data 要被迭代的信息的结构体 * @param _data 返回的MADT的虚拟地址 * @param count 返回数组的长度 * @return true * @return false */ bool acpi_get_MADT(const struct acpi_system_description_table_header_t *_iter_data, void *_data) { if (!(_iter_data->Signature[0] == 'A' && _iter_data->Signature[1] == 'P' && _iter_data->Signature[2] == 'I' && _iter_data->Signature[3] == 'C')) return false; //*(struct acpi_Multiple_APIC_Description_Table_t *)_data = *(struct acpi_Multiple_APIC_Description_Table_t *)_iter_data; // 返回MADT的虚拟地址 *(ul *)_data = (ul)_iter_data; acpi_madt_vaddr = (ul)_iter_data; return true; } /** * @brief 获取HPET HPET_description_table * * @param _iter_data 要被迭代的信息的结构体 * @param _data 返回的HPET表的虚拟地址 * @return true * @return false */ bool acpi_get_HPET(const struct acpi_system_description_table_header_t *_iter_data, void *_data) { if (!(_iter_data->Signature[0] == 'H' && _iter_data->Signature[1] == 'P' && _iter_data->Signature[2] == 'E' && _iter_data->Signature[3] == 'T')) return false; *(ul *)_data = (ul)_iter_data; return true; } /** * @brief 初始化acpi模块 * */ // todo: 修复bug:当物理机上提供了rsdpv2之后,rsdpv1是不提供的(物理地址为0),因此需要手动判断rsdp的版本信息,然后做对应的解析。 void acpi_init() { kinfo("Initializing ACPI..."); // 获取物理地址 int reserved; multiboot2_iter(multiboot2_get_acpi_old_RSDP, &old_acpi, &reserved); rsdpv1 = &(old_acpi.rsdp); multiboot2_iter(multiboot2_get_acpi_new_RSDP, &new_acpi, &reserved); rsdpv2 = &(new_acpi.rsdp); uint64_t paddr = 0; // An ACPI-compatible OS must use the XSDT if present if (rsdpv2->XsdtAddress != 0x00UL) { // 不要删除这段注释(因为还不确定是代码的bug,还是真机的bug) /* acpi_use_xsdt = true; ul xsdt_phys_base = rsdpv2->XsdtAddress & PAGE_2M_MASK; acpi_XSDT_offset = rsdpv2->XsdtAddress - xsdt_phys_base; mm_map_phys_addr(ACPI_XSDT_VIRT_ADDR_BASE, xsdt_phys_base, PAGE_2M_SIZE, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD, false); kdebug("XSDT mapped!"); xsdt = (struct acpi_XSDT_Structure_t *)(ACPI_XSDT_VIRT_ADDR_BASE + acpi_XSDT_offset); // 计算RSDT Entry的数量 kdebug("offset=%d", sizeof(xsdt->header)); kdebug("xsdt sign=%s", xsdt->header.Signature); acpi_XSDT_Entry_num = (xsdt->header.Length - sizeof(xsdt->header)) / 8; printk_color(ORANGE, BLACK, "XSDT Length=%dbytes.\n", xsdt->header.Length); printk_color(ORANGE, BLACK, "XSDT Entry num=%d\n", acpi_XSDT_Entry_num); mm_map_phys_addr(ACPI_XSDT_VIRT_ADDR_BASE, xsdt_phys_base, xsdt->header.Length + PAGE_2M_SIZE, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD, false); // 映射所有的Entry的物理地址 ul *ent = &(xsdt->Entry); for (int j = 0; j < acpi_XSDT_Entry_num; ++j) { kdebug("entry=%#018lx, virt=%#018lx", (*(ent + j)) & PAGE_2M_MASK, ACPI_XSDT_DESCRIPTION_HEDERS_BASE + PAGE_2M_SIZE * j); // 映射RSDT ENTRY的物理地址 mm_map_phys_addr(ACPI_XSDT_DESCRIPTION_HEDERS_BASE + PAGE_2M_SIZE * j, (*(ent + j)) & PAGE_2M_MASK, PAGE_2M_SIZE, PAGE_KERNEL_PAGE | PAGE_PWT | PAGE_PCD, false); } */ // 由于解析XSDT出现问题。暂时只使用Rsdpv2的rsdt,但是这是不符合ACPI规范的!!! ul rsdt_phys_base = rsdpv2->rsdp1.RsdtAddress & PAGE_2M_MASK; acpi_RSDT_offset = rsdpv2->rsdp1.RsdtAddress - rsdt_phys_base; //申请mmio空间 uint64_t size = 0; mmio_create(PAGE_2M_SIZE, VM_IO | VM_DONTCOPY, &acpi_rsdt_virt_addr_base, &size); //映射rsdt表 paddr = (uint64_t)rsdt_phys_base; mm_map(&initial_mm, acpi_rsdt_virt_addr_base, PAGE_2M_SIZE, paddr); // rsdt表虚拟地址 rsdt = (struct acpi_RSDT_Structure_t *)(acpi_rsdt_virt_addr_base + acpi_RSDT_offset); kdebug("RSDT mapped!(v2)"); // 计算RSDT Entry的数量 kdebug("offset=%d", sizeof(rsdt->header)); acpi_RSDT_Entry_num = (rsdt->header.Length - 36) / 4; printk_color(ORANGE, BLACK, "RSDT Length=%dbytes.\n", rsdt->header.Length); printk_color(ORANGE, BLACK, "RSDT Entry num=%d\n", acpi_RSDT_Entry_num); //申请mmio空间 mmio_create(PAGE_2M_SIZE, VM_IO | VM_DONTCOPY, &acpi_description_header_base, &size); // 映射所有的Entry的物理地址 acpi_RSDT_entry_phys_base = ((ul)(rsdt->Entry)) & PAGE_2M_MASK; // 由于地址只是32bit的,并且存在脏数据,这里需要手动清除高32bit,否则会触发#GP acpi_RSDT_entry_phys_base = MASK_HIGH_32bit(acpi_RSDT_entry_phys_base); paddr = (uint64_t)acpi_RSDT_entry_phys_base; mm_map(&initial_mm, acpi_description_header_base, PAGE_2M_SIZE, paddr); } else if (rsdpv1->RsdtAddress != (uint)0x00UL) { // rsdt表物理地址 ul rsdt_phys_base = rsdpv1->RsdtAddress & PAGE_2M_MASK; acpi_RSDT_offset = rsdpv1->RsdtAddress - rsdt_phys_base; kdebug("rsdpv1->RsdtAddress=%#018lx", rsdpv1->RsdtAddress); //申请mmio空间 uint64_t size = 0; mmio_create(PAGE_2M_SIZE, VM_IO | VM_DONTCOPY, &acpi_rsdt_virt_addr_base, &size); // kdebug("acpi_rsdt_virt_addr_base = %#018lx,size= %#010lx", acpi_rsdt_virt_addr_base, size); //映射rsdt表 paddr = (uint64_t)rsdt_phys_base; mm_map(&initial_mm, acpi_rsdt_virt_addr_base, PAGE_2M_SIZE, paddr); // rsdt表虚拟地址 rsdt = (struct acpi_RSDT_Structure_t *)(acpi_rsdt_virt_addr_base + acpi_RSDT_offset); kdebug("RSDT mapped!"); // kdebug("length = %d",rsdt->header.Length); // 计算RSDT Entry的数量 // kdebug("offset=%d", sizeof(rsdt->header)); acpi_RSDT_Entry_num = (rsdt->header.Length - 36) / 4; printk_color(ORANGE, BLACK, "RSDT Length=%dbytes.\n", rsdt->header.Length); printk_color(ORANGE, BLACK, "RSDT Entry num=%d\n", acpi_RSDT_Entry_num); //申请mmio空间 mmio_create(PAGE_2M_SIZE, VM_IO | VM_DONTCOPY, &acpi_description_header_base, &size); // 映射所有的Entry的物理地址 acpi_RSDT_entry_phys_base = ((ul)(rsdt->Entry)) & PAGE_2M_MASK; // 由于地址只是32bit的,并且存在脏数据,这里需要手动清除高32bit,否则会触发#GP acpi_RSDT_entry_phys_base = MASK_HIGH_32bit(acpi_RSDT_entry_phys_base); paddr = (uint64_t)acpi_RSDT_entry_phys_base; mm_map(&initial_mm, acpi_description_header_base, PAGE_2M_SIZE, paddr); // kinfo("entry mapped!"); } else { // should not reach here! kBUG("At acpi_init(): Cannot get right SDT!"); while (1) ; } kinfo("ACPI module initialized!"); return; }