#include "process.h" #include #include #include #include extern spinlock_t process_global_pid_write_lock; extern long process_global_pid; extern void kernel_thread_func(void); int process_copy_files(uint64_t clone_flags, struct process_control_block *pcb); int process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb); int process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb); int process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs); extern int process_copy_sighand(uint64_t clone_flags, struct process_control_block *pcb); extern int process_copy_signal(uint64_t clone_flags, struct process_control_block *pcb); extern void process_exit_sighand(struct process_control_block *pcb); extern void process_exit_signal(struct process_control_block *pcb); /** * @brief fork当前进程 * * @param regs 新的寄存器值 * @param clone_flags 克隆标志 * @param stack_start 堆栈开始地址 * @param stack_size 堆栈大小 * @return unsigned long */ unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size) { int retval = 0; struct process_control_block *tsk = NULL; // 为新的进程分配栈空间,并将pcb放置在底部 tsk = (struct process_control_block *)kzalloc(STACK_SIZE, 0); barrier(); if (tsk == NULL) { retval = -ENOMEM; return retval; } barrier(); memset(tsk, 0, sizeof(struct process_control_block)); io_mfence(); // 将当前进程的pcb复制到新的pcb内 memcpy(tsk, current_pcb, sizeof(struct process_control_block)); tsk->worker_private = NULL; io_mfence(); // 初始化进程的循环链表结点 list_init(&tsk->list); io_mfence(); // 判断是否为内核态调用fork if ((current_pcb->flags & PF_KTHREAD) && stack_start != 0) tsk->flags |= PF_KFORK; if (tsk->flags & PF_KTHREAD) { // 对于内核线程,设置其worker私有信息 retval = kthread_set_worker_private(tsk); if (IS_ERR_VALUE(retval)) goto copy_flags_failed; tsk->virtual_runtime = 0; } tsk->priority = 2; tsk->preempt_count = 0; // 增加全局的pid并赋值给新进程的pid spin_lock(&process_global_pid_write_lock); tsk->pid = process_global_pid++; barrier(); // 加入到进程链表中 // todo: 对pcb_list_lock加锁 tsk->prev_pcb = &initial_proc_union.pcb; barrier(); tsk->next_pcb = initial_proc_union.pcb.next_pcb; barrier(); initial_proc_union.pcb.next_pcb = tsk; barrier(); tsk->parent_pcb = current_pcb; barrier(); spin_unlock(&process_global_pid_write_lock); tsk->cpu_id = proc_current_cpu_id; tsk->state = PROC_UNINTERRUPTIBLE; tsk->parent_pcb = current_pcb; wait_queue_init(&tsk->wait_child_proc_exit, NULL); barrier(); list_init(&tsk->list); retval = -ENOMEM; // 拷贝标志位 retval = process_copy_flags(clone_flags, tsk); if (retval) goto copy_flags_failed; // 拷贝内存空间分布结构体 retval = process_copy_mm(clone_flags, tsk); if (retval) goto copy_mm_failed; // 拷贝文件 retval = process_copy_files(clone_flags, tsk); if (retval) goto copy_files_failed; // 拷贝信号处理函数 retval = process_copy_sighand(clone_flags, tsk); if (retval) goto copy_sighand_failed; retval = process_copy_signal(clone_flags, tsk); if (retval) goto copy_signal_failed; // 拷贝线程结构体 retval = process_copy_thread(clone_flags, tsk, stack_start, stack_size, regs); if (retval) goto copy_thread_failed; // 拷贝成功 retval = tsk->pid; tsk->flags &= ~PF_KFORK; // 唤醒进程 process_wakeup(tsk); //创建对应procfs文件 procfs_register_pid(tsk->pid); return retval; copy_thread_failed:; // 回收线程 process_exit_thread(tsk); copy_files_failed:; // 回收文件 process_exit_files(tsk); copy_sighand_failed:; process_exit_sighand(tsk); copy_signal_failed:; process_exit_signal(tsk); copy_mm_failed:; // 回收内存空间分布结构体 process_exit_mm(tsk); copy_flags_failed:; kfree(tsk); return retval; } /** * @brief 拷贝当前进程的标志位 * * @param clone_flags 克隆标志位 * @param pcb 新的进程的pcb * @return uint64_t */ int process_copy_flags(uint64_t clone_flags, struct process_control_block *pcb) { if (clone_flags & CLONE_VM) pcb->flags |= PF_VFORK; return 0; } /** * @brief 拷贝当前进程的文件描述符等信息 * * @param clone_flags 克隆标志位 * @param pcb 新的进程的pcb * @return uint64_t */ int process_copy_files(uint64_t clone_flags, struct process_control_block *pcb) { int retval = 0; // 如果CLONE_FS被置位,那么子进程与父进程共享文件描述符 // 文件描述符已经在复制pcb时被拷贝 if (clone_flags & CLONE_FS) return retval; // 为新进程拷贝新的文件描述符 for (int i = 0; i < PROC_MAX_FD_NUM; ++i) { if (current_pcb->fds[i] == NULL) continue; pcb->fds[i] = (struct vfs_file_t *)kmalloc(sizeof(struct vfs_file_t), 0); memcpy(pcb->fds[i], current_pcb->fds[i], sizeof(struct vfs_file_t)); } return retval; } /** * @brief 拷贝当前进程的内存空间分布结构体信息 * * @param clone_flags 克隆标志位 * @param pcb 新的进程的pcb * @return uint64_t */ int process_copy_mm(uint64_t clone_flags, struct process_control_block *pcb) { int retval = 0; // 与父进程共享内存空间 if (clone_flags & CLONE_VM) { pcb->mm = current_pcb->mm; return retval; } // 分配新的内存空间分布结构体 struct mm_struct *new_mms = (struct mm_struct *)kmalloc(sizeof(struct mm_struct), 0); memset(new_mms, 0, sizeof(struct mm_struct)); memcpy(new_mms, current_pcb->mm, sizeof(struct mm_struct)); new_mms->vmas = NULL; pcb->mm = new_mms; // 分配顶层页表, 并设置顶层页表的物理地址 new_mms->pgd = (pml4t_t *)virt_2_phys(kmalloc(PAGE_4K_SIZE, 0)); // 由于高2K部分为内核空间,在接下来需要覆盖其数据,因此不用清零 memset(phys_2_virt(new_mms->pgd), 0, PAGE_4K_SIZE / 2); // 拷贝内核空间的页表指针 memcpy(phys_2_virt(new_mms->pgd) + 256, phys_2_virt(initial_proc[proc_current_cpu_id]->mm->pgd) + 256, PAGE_4K_SIZE / 2); uint64_t *current_pgd = (uint64_t *)phys_2_virt(current_pcb->mm->pgd); uint64_t *new_pml4t = (uint64_t *)phys_2_virt(new_mms->pgd); // 拷贝用户空间的vma struct vm_area_struct *vma = current_pcb->mm->vmas; while (vma != NULL) { if (vma->vm_end > USER_MAX_LINEAR_ADDR || vma->vm_flags & VM_DONTCOPY) { vma = vma->vm_next; continue; } int64_t vma_size = vma->vm_end - vma->vm_start; // kdebug("vma_size=%ld, vm_start=%#018lx", vma_size, vma->vm_start); if (vma_size > PAGE_2M_SIZE / 2) { int page_to_alloc = (PAGE_2M_ALIGN(vma_size)) >> PAGE_2M_SHIFT; for (int i = 0; i < page_to_alloc; ++i) { uint64_t pa = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys; struct vm_area_struct *new_vma = NULL; int ret = mm_create_vma(new_mms, vma->vm_start + i * PAGE_2M_SIZE, PAGE_2M_SIZE, vma->vm_flags, vma->vm_ops, &new_vma); // 防止内存泄露 if (unlikely(ret == -EEXIST)) free_pages(Phy_to_2M_Page(pa), 1); else mm_map_vma(new_vma, pa, 0, PAGE_2M_SIZE); memcpy((void *)phys_2_virt(pa), (void *)(vma->vm_start + i * PAGE_2M_SIZE), (vma_size >= PAGE_2M_SIZE) ? PAGE_2M_SIZE : vma_size); vma_size -= PAGE_2M_SIZE; } } else { uint64_t map_size = PAGE_4K_ALIGN(vma_size); uint64_t va = (uint64_t)kmalloc(map_size, 0); struct vm_area_struct *new_vma = NULL; int ret = mm_create_vma(new_mms, vma->vm_start, map_size, vma->vm_flags, vma->vm_ops, &new_vma); // 防止内存泄露 if (unlikely(ret == -EEXIST)) kfree((void *)va); else mm_map_vma(new_vma, virt_2_phys(va), 0, map_size); memcpy((void *)va, (void *)vma->vm_start, vma_size); } vma = vma->vm_next; } return retval; } /** * @brief 重写内核栈中的rbp地址 * * @param new_regs 子进程的reg * @param new_pcb 子进程的pcb * @return int */ static int process_rewrite_rbp(struct pt_regs *new_regs, struct process_control_block *new_pcb) { uint64_t new_top = ((uint64_t)new_pcb) + STACK_SIZE; uint64_t old_top = (uint64_t)(current_pcb) + STACK_SIZE; uint64_t *rbp = &new_regs->rbp; uint64_t *tmp = rbp; // 超出内核栈范围 if ((uint64_t)*rbp >= old_top || (uint64_t)*rbp < (old_top - STACK_SIZE)) return 0; while (1) { // 计算delta uint64_t delta = old_top - *rbp; // 计算新的rbp值 uint64_t newVal = new_top - delta; // 新的值不合法 if (unlikely((uint64_t)newVal >= new_top || (uint64_t)newVal < (new_top - STACK_SIZE))) break; // 将新的值写入对应位置 *rbp = newVal; // 跳转栈帧 rbp = (uint64_t *)*rbp; } // 设置内核态fork返回到enter_syscall_int()函数内的时候,rsp寄存器的值 new_regs->rsp = new_top - (old_top - new_regs->rsp); return 0; } /** * @brief 拷贝当前进程的线程结构体 * * @param clone_flags 克隆标志位 * @param pcb 新的进程的pcb * @return uint64_t */ int process_copy_thread(uint64_t clone_flags, struct process_control_block *pcb, uint64_t stack_start, uint64_t stack_size, struct pt_regs *current_regs) { // 将线程结构体放置在pcb后方 struct thread_struct *thd = (struct thread_struct *)(pcb + 1); memset(thd, 0, sizeof(struct thread_struct)); pcb->thread = thd; struct pt_regs *child_regs = NULL; // 拷贝栈空间 if (pcb->flags & PF_KFORK) // 内核态下的fork { // 内核态下则拷贝整个内核栈 uint32_t size = ((uint64_t)current_pcb) + STACK_SIZE - (uint64_t)(current_regs); child_regs = (struct pt_regs *)(((uint64_t)pcb) + STACK_SIZE - size); memcpy(child_regs, (void *)current_regs, size); barrier(); // 然后重写新的栈中,每个栈帧的rbp值 process_rewrite_rbp(child_regs, pcb); } else { child_regs = (struct pt_regs *)((uint64_t)pcb + STACK_SIZE - sizeof(struct pt_regs)); memcpy(child_regs, current_regs, sizeof(struct pt_regs)); barrier(); child_regs->rsp = stack_start; } // 设置子进程的返回值为0 child_regs->rax = 0; if (pcb->flags & PF_KFORK) thd->rbp = (uint64_t)(child_regs + 1); // 设置新的内核线程开始执行时的rbp(也就是进入ret_from_system_call时的rbp) else thd->rbp = (uint64_t)pcb + STACK_SIZE; // 设置新的内核线程开始执行的时候的rsp thd->rsp = (uint64_t)child_regs; thd->fs = current_pcb->thread->fs; thd->gs = current_pcb->thread->gs; // 根据是否为内核线程、是否在内核态fork,设置进程的开始执行的地址 if (pcb->flags & PF_KFORK) thd->rip = (uint64_t)ret_from_system_call; else if (pcb->flags & PF_KTHREAD && (!(pcb->flags & PF_KFORK))) thd->rip = (uint64_t)kernel_thread_func; else thd->rip = (uint64_t)ret_from_system_call; return 0; }