#include "fat_ent.h" #include "internal.h" #include #include #include static const char unavailable_character_in_short_name[] = {0x22, 0x2a, 0x2b, 0x2c, 0x2e, 0x2f, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x5b, 0x5c, 0x5d, 0x7c}; /** * @brief 请求分配指定数量的簇 * * @param inode 要分配簇的inode * @param clusters 返回的被分配的簇的簇号结构体 * @param num_clusters 要分配的簇的数量 * @return int 错误码 */ int fat32_alloc_clusters(struct vfs_index_node_t *inode, uint32_t *clusters, int32_t num_clusters) { int retval = 0; fat32_sb_info_t *fsbi = (fat32_sb_info_t *)inode->sb->private_sb_info; struct fat32_inode_info_t *finode = (struct fat32_inode_info_t *)inode->private_inode_info; struct block_device *blk = inode->sb->blk_device; uint64_t sec_per_fat = fsbi->sec_per_FAT; // 申请1扇区的缓冲区 uint32_t *buf = (uint32_t *)kzalloc(fsbi->bytes_per_sec, 0); int ent_per_sec = (fsbi->bytes_per_sec >> 2); int clus_idx = 0; for (int i = 0; i < sec_per_fat; ++i) { if (clus_idx >= num_clusters) goto done; memset(buf, 0, fsbi->bytes_per_sec); blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_READ_DMA_EXT, fsbi->FAT1_base_sector + i, 1, (uint64_t)buf); // 依次检查簇是否空闲 for (int j = 0; j < ent_per_sec; ++j) { if (clus_idx >= num_clusters) goto done; // 找到空闲簇 if ((buf[j] & 0x0fffffff) == 0) { // kdebug("clus[%d] = %d", clus_idx, i * ent_per_sec + j); clusters[clus_idx] = i * ent_per_sec + j; ++clus_idx; } } } // 空间不足 retval = -ENOSPC; done:; kfree(buf); if (retval == 0) // 成功 { int cluster, idx; if (finode->first_clus == 0) { // 空文件 finode->first_clus = clusters[0]; cluster = finode->first_clus; // 写入inode到磁盘 inode->sb->sb_ops->write_inode(inode); idx = 1; } else { // 跳转到文件当前的最后一个簇 idx = 0; int tmp_clus = finode->first_clus; cluster = tmp_clus; while (true) { tmp_clus = fat32_read_FAT_entry(blk, fsbi, cluster); if (tmp_clus <= 0x0ffffff7) cluster = tmp_clus; else break; } } // 写入fat表 for (int i = idx; i < num_clusters; ++i) { // kdebug("write cluster i=%d : cluster=%d, value= %d", i, cluster, clusters[i]); fat32_write_FAT_entry(blk, fsbi, cluster, clusters[i]); cluster = clusters[i]; } fat32_write_FAT_entry(blk, fsbi, cluster, 0x0ffffff8); return 0; } else // 出现错误 { kwarn("err in alloc clusters"); if (clus_idx < num_clusters) fat32_free_clusters(inode, clusters[0]); return retval; } return 0; } /** * @brief 释放从属于inode的,从cluster开始的所有簇 * * @param inode 指定的文件的inode * @param cluster 指定簇 * @return int 错误码 */ int fat32_free_clusters(struct vfs_index_node_t *inode, int32_t cluster) { // todo: 释放簇 return 0; } /** * @brief 读取指定簇的FAT表项 * * @param blk 块设备结构体 * @param fsbi fat32超级块私有信息结构体 * @param cluster 指定簇 * @return uint32_t 下一个簇的簇号 */ uint32_t fat32_read_FAT_entry(struct block_device *blk, fat32_sb_info_t *fsbi, uint32_t cluster) { // 计算每个扇区内含有的FAT表项数 // FAT每项4bytes uint32_t fat_ent_per_sec = (fsbi->bytes_per_sec >> 2); // 该值应为2的n次幂 uint32_t buf[256]; memset(buf, 0, fsbi->bytes_per_sec); // 读取一个sector的数据, blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_READ_DMA_EXT, fsbi->FAT1_base_sector + (cluster / fat_ent_per_sec), 1, (uint64_t)&buf); // 返回下一个fat表项的值(也就是下一个cluster) return buf[cluster & (fat_ent_per_sec - 1)] & 0x0fffffff; } /** * @brief 写入指定簇的FAT表项 * * @param blk 块设备结构体 * @param fsbi fat32超级块私有信息结构体 * @param cluster 指定簇 * @param value 要写入该fat表项的值 * @return uint32_t errcode */ int fat32_write_FAT_entry(struct block_device *blk, fat32_sb_info_t *fsbi, uint32_t cluster, uint32_t value) { // 计算每个扇区内含有的FAT表项数 // FAT每项4bytes uint32_t fat_ent_per_sec = (fsbi->bytes_per_sec >> 2); // 该值应为2的n次幂 uint32_t *buf = kzalloc(fsbi->bytes_per_sec, 0); blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_READ_DMA_EXT, fsbi->FAT1_base_sector + (cluster / fat_ent_per_sec), 1, (uint64_t)buf); buf[cluster & (fat_ent_per_sec - 1)] = (buf[cluster & (fat_ent_per_sec - 1)] & 0xf0000000) | (value & 0x0fffffff); // 向FAT1和FAT2写入数据 blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_WRITE_DMA_EXT, fsbi->FAT1_base_sector + (cluster / fat_ent_per_sec), 1, (uint64_t)buf); blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_WRITE_DMA_EXT, fsbi->FAT2_base_sector + (cluster / fat_ent_per_sec), 1, (uint64_t)buf); kfree(buf); return 0; } /** * @brief 在父亲inode的目录项簇中,寻找连续num个空的目录项 * * @param parent_inode 父inode * @param num 请求的目录项数量 * @param mode 操作模式 * @param res_sector 返回信息:缓冲区对应的扇区号 * @param res_cluster 返回信息:缓冲区对应的簇号 * @param res_data_buf_base 返回信息:缓冲区的内存基地址(记得要释放缓冲区内存!!!!) * @return struct fat32_Directory_t* * 符合要求的entry的指针(指向地址高处的空目录项,也就是说,有连续num个≤这个指针的空目录项) */ struct fat32_Directory_t *fat32_find_empty_dentry(struct vfs_index_node_t *parent_inode, uint32_t num, uint32_t mode, uint32_t *res_sector, uint64_t *res_cluster, uint64_t *res_data_buf_base) { // kdebug("find empty_dentry"); struct fat32_inode_info_t *finode = (struct fat32_inode_info_t *)parent_inode->private_inode_info; fat32_sb_info_t *fsbi = (fat32_sb_info_t *)parent_inode->sb->private_sb_info; uint8_t *buf = kzalloc(fsbi->bytes_per_clus, 0); struct block_device *blk = parent_inode->sb->blk_device; // 计算父目录项的起始簇号 uint32_t cluster = finode->first_clus; struct fat32_Directory_t *tmp_dEntry = NULL; // 指向最终的有用的dentry的指针 struct fat32_Directory_t *result_dEntry = NULL; while (true) { // 计算父目录项的起始LBA扇区号 uint64_t sector = fsbi->first_data_sector + (cluster - 2) * fsbi->sec_per_clus; // 读取父目录项的起始簇数据 blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_READ_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)buf); tmp_dEntry = (struct fat32_Directory_t *)buf; // 计数连续的空目录项 uint32_t count_continuity = 0; // 查找连续num个空闲目录项 for (int i = 0; (i < fsbi->bytes_per_clus) && count_continuity < num; i += 32, ++tmp_dEntry) { if (!(tmp_dEntry->DIR_Name[0] == 0xe5 || tmp_dEntry->DIR_Name[0] == 0x00 || tmp_dEntry->DIR_Name[0] == 0x05)) { count_continuity = 0; continue; } if (count_continuity == 0) result_dEntry = tmp_dEntry; ++count_continuity; } // 成功查找到符合要求的目录项 if (count_continuity == num) { result_dEntry += (num - 1); *res_sector = sector; *res_data_buf_base = (uint64_t)buf; *res_cluster = cluster; return result_dEntry; } // 当前簇没有发现符合条件的空闲目录项,寻找下一个簇 uint64_t old_cluster = cluster; cluster = fat32_read_FAT_entry(blk, fsbi, cluster); if (cluster >= 0x0ffffff7) // 寻找完父目录的所有簇,都没有找到符合要求的空目录项 { // 新增一个簇 if (fat32_alloc_clusters(parent_inode, &cluster, 1) != 0) { kerror("Cannot allocate a new cluster!"); while (1) pause(); } // 将这个新的簇清空 sector = fsbi->first_data_sector + (cluster - 2) * fsbi->sec_per_clus; void *tmp_buf = kzalloc(fsbi->bytes_per_clus, 0); blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_WRITE_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)tmp_buf); kfree(tmp_buf); } } } /** * @brief 检查文件名是否合法 * * @param name 文件名 * @param namelen 文件名长度 * @param reserved 保留字段 * @return int 合法:0, 其他:错误码 */ int fat32_check_name_available(const char *name, int namelen, int8_t reserved) { if (namelen > 255 || namelen <= 0) return -ENAMETOOLONG; // 首个字符不能是空格或者'.' if (name[0] == 0x20 || name[0] == '.') return -EINVAL; return 0; } /** * @brief 检查字符在短目录项中是否合法 * * @param c 给定字符 * @param index 字符在文件名中处于第几位 * @return true 合法 * @return false 不合法 */ bool fat32_check_char_available_in_short_name(const char c, int index) { // todo: 严格按照fat规范完善合法性检查功能 if (index == 0) { if (c < 0x20) { if (c != 0x05) return false; return true; } } for (int i = 0; i < sizeof(unavailable_character_in_short_name) / sizeof(char); ++i) { if (c == unavailable_character_in_short_name[i]) return false; } return true; } /** * @brief 填充短目录项的函数 * * @param dEntry 目标dentry * @param target 目标dentry对应的短目录项 * @param cluster 短目录项对应的文件/文件夹起始簇 */ void fat32_fill_shortname(struct vfs_dir_entry_t *dEntry, struct fat32_Directory_t *target, uint32_t cluster) { memset(target, 0, sizeof(struct fat32_Directory_t)); { int tmp_index = 0; // kdebug("dEntry->name_length=%d", dEntry->name_length); for (tmp_index = 0; tmp_index < min(8, dEntry->name_length); ++tmp_index) { if (dEntry->name[tmp_index] == '.') break; if (fat32_check_char_available_in_short_name(dEntry->name[tmp_index], tmp_index)) target->DIR_Name[tmp_index] = dEntry->name[tmp_index]; else target->DIR_Name[tmp_index] = 0x20; } // 不满的部分使用0x20填充 while (tmp_index < 8) { // kdebug("tmp index = %d", tmp_index); target->DIR_Name[tmp_index] = 0x20; ++tmp_index; } if (dEntry->dir_inode->attribute & VFS_IF_DIR) { while (tmp_index < 11) { // kdebug("tmp index = %d", tmp_index); target->DIR_Name[tmp_index] = 0x20; ++tmp_index; } } else { for (int j = 8; j < 11; ++j) { target->DIR_Name[j] = 'a'; } } } struct vfs_index_node_t *inode = dEntry->dir_inode; target->DIR_Attr = 0; if (inode->attribute & VFS_IF_DIR) target->DIR_Attr |= ATTR_DIRECTORY; target->DIR_FileSize = dEntry->dir_inode->file_size; target->DIR_FstClusHI = (uint16_t)((cluster >> 16) & 0x0fff); target->DIR_FstClusLO = (uint16_t)(cluster & 0xffff); // todo: 填写短目录项中的时间信息 } /** * @brief 填充长目录项的函数 * * @param dEntry 目标dentry * @param target 起始长目录项 * @param checksum 短目录项的校验和 * @param cnt_longname 总的长目录项的个数 */ void fat32_fill_longname(struct vfs_dir_entry_t *dEntry, struct fat32_LongDirectory_t *target, uint8_t checksum, uint32_t cnt_longname) { uint32_t current_name_index = 0; struct fat32_LongDirectory_t *Ldentry = (struct fat32_LongDirectory_t *)(target + 1); // kdebug("filling long name, name=%s, namelen=%d", dEntry->name, dEntry->name_length); int name_length = dEntry->name_length + 1; for (int i = 1; i <= cnt_longname; ++i) { --Ldentry; Ldentry->LDIR_Ord = i; for (int j = 0; j < 5; ++j, ++current_name_index) { if (current_name_index < name_length) Ldentry->LDIR_Name1[j] = dEntry->name[current_name_index]; else Ldentry->LDIR_Name1[j] = 0xffff; } for (int j = 0; j < 6; ++j, ++current_name_index) { if (current_name_index < name_length) Ldentry->LDIR_Name2[j] = dEntry->name[current_name_index]; else Ldentry->LDIR_Name2[j] = 0xffff; } for (int j = 0; j < 2; ++j, ++current_name_index) { if (current_name_index < name_length) Ldentry->LDIR_Name3[j] = dEntry->name[current_name_index]; else Ldentry->LDIR_Name3[j] = 0xffff; } Ldentry->LDIR_Attr = ATTR_LONG_NAME; Ldentry->LDIR_FstClusLO = 0; Ldentry->LDIR_Type = 0; Ldentry->LDIR_Chksum = checksum; } // 最后一个长目录项的ord要|=0x40 Ldentry->LDIR_Ord |= 0x40; } /** * @brief 删除目录项 * * @param dir 父目录的inode * @param sinfo 待删除的dentry的插槽信息 * @return int 错误码 */ int fat32_remove_entries(struct vfs_index_node_t *dir, struct fat32_slot_info *sinfo) { int retval = 0; struct vfs_superblock_t *sb = dir->sb; struct fat32_Directory_t *de = sinfo->de; fat32_sb_info_t *fsbi = (fat32_sb_info_t *)sb->private_sb_info; int cnt_dentries = sinfo->num_slots; // 获取文件数据区的起始簇号 int data_cluster = ((((uint32_t)de->DIR_FstClusHI) << 16) | ((uint32_t)de->DIR_FstClusLO)) & 0x0fffffff; // kdebug("data_cluster=%d, cnt_dentries=%d, offset=%d", data_cluster, cnt_dentries, sinfo->slot_off); // kdebug("fsbi->first_data_sector=%d, sec per clus=%d, i_pos=%d", fsbi->first_data_sector, fsbi->sec_per_clus, // sinfo->i_pos); // === 第一阶段,先删除短目录项 while (cnt_dentries > 0) { de->DIR_Name[0] = FAT32_DELETED_FLAG; --cnt_dentries; --de; } // === 第二阶段:将对目录项的更改写入磁盘 sb->blk_device->bd_disk->fops->transfer(sb->blk_device->bd_disk, AHCI_CMD_WRITE_DMA_EXT, sinfo->i_pos, fsbi->sec_per_clus, (uint64_t)sinfo->buffer); // === 第三阶段:清除文件的数据区 uint32_t next_clus; int js = 0; // kdebug("data_cluster=%#018lx", data_cluster); while (data_cluster < 0x0ffffff8 && data_cluster >= 2) { // 读取下一个表项 next_clus = fat32_read_FAT_entry(sb->blk_device, fsbi, data_cluster); // kdebug("data_cluster=%#018lx, next_clus=%#018lx", data_cluster, next_clus); // 清除当前表项 retval = fat32_write_FAT_entry(sb->blk_device, fsbi, data_cluster, 0); if (unlikely(retval != 0)) { kerror("fat32_remove_entries: Failed to mark fat entry as unused for cluster:%d", data_cluster); goto out; } ++js; data_cluster = next_clus; } out:; // kdebug("Successfully remove %d clusters.", js); return retval; }