#include "fat32.h" #include "fat_ent.h" #include "internal.h" #include #include #include #include #include #include #include #include struct vfs_super_block_operations_t fat32_sb_ops; struct vfs_dir_entry_operations_t fat32_dEntry_ops; struct vfs_file_operations_t fat32_file_ops; struct vfs_inode_operations_t fat32_inode_ops; extern struct blk_gendisk ahci_gendisk0; static unsigned int vfat_striptail_len(unsigned int len, const char *name); static int vfat_find(struct vfs_index_node_t *dir, const char *name, struct fat32_slot_info *slot_info); static int __fat32_search_long_short(struct vfs_index_node_t *parent_inode, const char *name, int name_len, struct fat32_slot_info *sinfo); static int fat32_detach_inode(struct vfs_index_node_t *inode); /** * @brief 注册指定磁盘上的指定分区的fat32文件系统 * * @param blk_dev 块设备结构体 * @param part_num 磁盘分区编号 * * @return struct vfs_super_block_t * 文件系统的超级块 */ struct vfs_superblock_t *fat32_register_partition(struct block_device *blk_dev, uint8_t part_num) { // 挂载文件系统到vfs return vfs_mount_fs("/", "FAT32", blk_dev); } /** * @brief 计算短目录项文件名的校验和 * * @param name 短目录项文件名字符串(长度为11) * @return uint8_t 校验和 */ static uint8_t fat32_ChkSum(uint8_t *name) { uint8_t chksum = 0; for (uint8_t i = 0; i < 11; ++i) { chksum = ((chksum & 1) ? 0x80 : 0) + (chksum >> 1) + *name; ++name; } return chksum; } static int __fat32_search_long_short(struct vfs_index_node_t *parent_inode, const char *name, int name_len, struct fat32_slot_info *sinfo) { struct fat32_inode_info_t *finode = (struct fat32_inode_info_t *)parent_inode->private_inode_info; fat32_sb_info_t *fsbi = (fat32_sb_info_t *)parent_inode->sb->private_sb_info; struct block_device *blk = parent_inode->sb->blk_device; uint8_t *buf = kzalloc(fsbi->bytes_per_clus, 0); // 计算父目录项的起始簇号 uint32_t cluster = finode->first_clus; struct fat32_Directory_t *tmp_dEntry = NULL; int cnt_long_dir = 0; // 最终结果中,长目录项的数量 while (true) { // 计算父目录项的起始LBA扇区号 uint64_t sector = __fat32_calculate_LBA(fsbi->first_data_sector, fsbi->sec_per_clus, cluster); // kdebug("fat32_part_info[part_id].bootsector.BPB_SecPerClus=%d",fat32_part_info[part_id].bootsector.BPB_SecPerClus); // kdebug("sector=%d",sector); // 读取父目录项的起始簇数据 blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_READ_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)buf); tmp_dEntry = (struct fat32_Directory_t *)buf; // 查找每个文件的短目录项 for (int i = 0; i < fsbi->bytes_per_clus; i += 32, ++tmp_dEntry) { // 跳过长目录项 if (tmp_dEntry->DIR_Attr == ATTR_LONG_NAME) continue; // 跳过无效目录项、空闲目录项 if (tmp_dEntry->DIR_Name[0] == 0xe5 || tmp_dEntry->DIR_Name[0] == 0x00 || tmp_dEntry->DIR_Name[0] == 0x05) continue; // kdebug("short name [%d] %s\n 33333==[%#02x]", i / 32, tmp_dEntry->DIR_Name, tmp_dEntry->DIR_Name[3]); // 找到长目录项,位于短目录项之前 struct fat32_LongDirectory_t *tmp_ldEntry = (struct fat32_LongDirectory_t *)tmp_dEntry - 1; cnt_long_dir = 0; int js = 0; // 遍历每个长目录项 while (tmp_ldEntry->LDIR_Attr == ATTR_LONG_NAME && tmp_ldEntry->LDIR_Ord != 0xe5) { // 比较name1 for (int x = 0; x < 5; ++x) { if (js >= name_len && (tmp_ldEntry->LDIR_Name1[x] == 0xffff)) continue; else if (js > name_len || tmp_ldEntry->LDIR_Name1[x] != (uint16_t)(name[js++])) // 文件名不匹配,检索下一个短目录项 goto continue_cmp_fail; } // 比较name2 for (int x = 0; x < 6; ++x) { if (js >= name_len && (tmp_ldEntry->LDIR_Name2[x] == 0xffff)) continue; else if (js > name_len || tmp_ldEntry->LDIR_Name2[x] != (uint16_t)(name[js++])) // 文件名不匹配,检索下一个短目录项 goto continue_cmp_fail; } // 比较name3 for (int x = 0; x < 2; ++x) { if (js >= name_len && (tmp_ldEntry->LDIR_Name3[x] == 0xffff)) continue; else if (js > name_len || tmp_ldEntry->LDIR_Name3[x] != (uint16_t)(name[js++])) // 文件名不匹配,检索下一个短目录项 goto continue_cmp_fail; } if (js >= name_len) // 找到需要的目录项,返回 { // kdebug("found target long name."); cnt_long_dir = tmp_dEntry - (struct fat32_Directory_t *)tmp_ldEntry; goto success; } --tmp_ldEntry; // 检索下一个长目录项 } // 不存在长目录项,匹配短目录项的基础名 js = 0; for (int x = 0; x < 8; ++x) { // kdebug("no long name, comparing short name"); // kdebug("value = %#02x", tmp_dEntry->DIR_Name[x]); switch (tmp_dEntry->DIR_Name[x]) { case ' ': if (!(tmp_dEntry->DIR_Attr & ATTR_DIRECTORY)) // 不是文件夹(是文件) { if (name[js] == '.') continue; else if (tmp_dEntry->DIR_Name[x] == name[js]) { ++js; break; } else goto continue_cmp_fail; } else // 是文件夹 { if (js < name_len && tmp_dEntry->DIR_Name[x] == name[js]) // 当前位正确匹配 { ++js; break; // 进行下一位的匹配 } else if (js == name_len) continue; else goto continue_cmp_fail; } break; // 当前位是字母 case 'A' ... 'Z': case 'a' ... 'z': if (tmp_dEntry->DIR_NTRes & LOWERCASE_BASE) // 为兼容windows系统,检测DIR_NTRes字段 { if (js < name_len && (tmp_dEntry->DIR_Name[x] + 32 == name[js])) { ++js; break; } else goto continue_cmp_fail; } else { if (js < name_len && tmp_dEntry->DIR_Name[x] == name[js]) { ++js; break; } else goto continue_cmp_fail; } break; case '0' ... '9': if (js < name_len && tmp_dEntry->DIR_Name[x] == name[js]) { ++js; break; } else goto continue_cmp_fail; break; default: // ++js; goto continue_cmp_fail; break; } } if (js > name_len) { // kdebug("js > namelen"); goto continue_cmp_fail; } // 若短目录项为文件,则匹配扩展名 if (!(tmp_dEntry->DIR_Attr & ATTR_DIRECTORY)) { ++js; for (int x = 8; x < 11; ++x) { switch (tmp_dEntry->DIR_Name[x]) { // 当前位是字母 case 'A' ... 'Z': case 'a' ... 'z': if (tmp_dEntry->DIR_NTRes & LOWERCASE_EXT) // 为兼容windows系统,检测DIR_NTRes字段 { if ((tmp_dEntry->DIR_Name[x] + 32 == name[js])) { ++js; break; } else goto continue_cmp_fail; } else { if (tmp_dEntry->DIR_Name[x] == name[js]) { ++js; break; } else goto continue_cmp_fail; } break; case '0' ... '9': case ' ': if (tmp_dEntry->DIR_Name[x] == name[js]) { ++js; break; } else goto continue_cmp_fail; break; default: goto continue_cmp_fail; break; } } } if (js > name_len) { // kdebug("js > namelen"); goto continue_cmp_fail; } cnt_long_dir = 0; goto success; continue_cmp_fail:; } // 当前簇没有发现目标文件名,寻找下一个簇 cluster = fat32_read_FAT_entry(blk, fsbi, cluster); if (cluster >= 0x0ffffff7) // 寻找完父目录的所有簇,都没有找到目标文件名 { kfree(buf); return -ENOENT; } } if (unlikely(tmp_dEntry == NULL)) { BUG_ON(1); kfree(buf); return -ENOENT; } success:; // 填充sinfo sinfo->buffer = buf; sinfo->de = tmp_dEntry; sinfo->i_pos = __fat32_calculate_LBA(fsbi->first_data_sector, fsbi->sec_per_clus, cluster); sinfo->num_slots = cnt_long_dir + 1; sinfo->slot_off = tmp_dEntry - (struct fat32_Directory_t *)buf; // kdebug("successfully found:%s", name); return 0; } /** * @brief 在父目录中寻找指定的目录项 * * @param parent_inode 父目录项的inode * @param dest_dentry 搜索目标目录项 * @return struct vfs_dir_entry_t* 目标目录项 */ struct vfs_dir_entry_t *fat32_lookup(struct vfs_index_node_t *parent_inode, struct vfs_dir_entry_t *dest_dentry) { int errcode = 0; fat32_sb_info_t *fsbi = (fat32_sb_info_t *)parent_inode->sb->private_sb_info; struct fat32_inode_info_t *finode = NULL; struct fat32_slot_info sinfo = {0}; errcode = vfat_find(parent_inode, dest_dentry->name, &sinfo); if (unlikely(errcode != 0)) return NULL; find_lookup_success:; // 找到目标dentry struct vfs_index_node_t *p = vfs_alloc_inode(); p->file_size = sinfo.de->DIR_FileSize; // 计算文件占用的扇区数, 由于最小存储单位是簇,因此需要按照簇的大小来对齐扇区 p->blocks = (p->file_size + fsbi->bytes_per_clus - 1) / fsbi->bytes_per_sec; p->attribute = (sinfo.de->DIR_Attr & ATTR_DIRECTORY) ? VFS_IF_DIR : VFS_IF_FILE; p->sb = parent_inode->sb; p->file_ops = &fat32_file_ops; p->inode_ops = &fat32_inode_ops; // 为inode的与文件系统相关的信息结构体分配空间 p->private_inode_info = (void *)kzalloc(sizeof(fat32_inode_info_t), 0); finode = (fat32_inode_info_t *)p->private_inode_info; finode->first_clus = ((sinfo.de->DIR_FstClusHI << 16) | sinfo.de->DIR_FstClusLO) & 0x0fffffff; finode->dEntry_location_clus = __fat32_LBA_to_cluster(fsbi->first_data_sector, fsbi->sec_per_clus, sinfo.i_pos); finode->dEntry_location_clus_offset = sinfo.slot_off; // 计算dentry的偏移量 // kdebug("finode->dEntry_location_clus=%#018lx", finode->dEntry_location_clus); // kdebug("finode->dEntry_location_clus_offset=%#018lx", finode->dEntry_location_clus_offset); finode->create_date = sinfo.de->DIR_CrtDate; finode->create_time = sinfo.de->DIR_CrtTime; finode->write_date = sinfo.de->DIR_WrtDate; finode->write_time = sinfo.de->DIR_WrtTime; // 暂时使用fat32的高4bit来标志设备文件 // todo: 引入devfs后删除这段代码 if ((sinfo.de->DIR_FstClusHI >> 12) && (p->attribute & VFS_IF_FILE)) p->attribute |= VFS_IF_DEVICE; dest_dentry->dir_inode = p; dest_dentry->dir_ops = &fat32_dEntry_ops; list_init(&dest_dentry->child_node_list); list_init(&dest_dentry->subdirs_list); kfree(sinfo.buffer); return dest_dentry; } /** * @brief 创建fat32文件系统的超级块 * * @param blk 块设备结构体 * @return struct vfs_superblock_t* 创建好的超级块 */ struct vfs_superblock_t *fat32_read_superblock(struct block_device *blk) { // 读取文件系统的boot扇区 uint8_t buf[512] = {0}; blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_READ_DMA_EXT, blk->bd_start_LBA, 1, (uint64_t)&buf); // 分配超级块的空间 struct vfs_superblock_t *sb_ptr = (struct vfs_superblock_t *)kzalloc(sizeof(struct vfs_superblock_t), 0); blk->bd_superblock = sb_ptr; sb_ptr->sb_ops = &fat32_sb_ops; sb_ptr->dir_ops = &fat32_dEntry_ops; sb_ptr->private_sb_info = kzalloc(sizeof(fat32_sb_info_t), 0); sb_ptr->blk_device = blk; struct fat32_BootSector_t *fbs = (struct fat32_BootSector_t *)buf; fat32_sb_info_t *fsbi = (fat32_sb_info_t *)(sb_ptr->private_sb_info); fsbi->starting_sector = blk->bd_start_LBA; fsbi->sector_count = blk->bd_sectors_num; fsbi->sec_per_clus = fbs->BPB_SecPerClus; fsbi->bytes_per_clus = fbs->BPB_SecPerClus * fbs->BPB_BytesPerSec; fsbi->bytes_per_sec = fbs->BPB_BytesPerSec; fsbi->first_data_sector = blk->bd_start_LBA + fbs->BPB_RsvdSecCnt + fbs->BPB_FATSz32 * fbs->BPB_NumFATs; fsbi->FAT1_base_sector = blk->bd_start_LBA + fbs->BPB_RsvdSecCnt; fsbi->FAT2_base_sector = fsbi->FAT1_base_sector + fbs->BPB_FATSz32; fsbi->sec_per_FAT = fbs->BPB_FATSz32; fsbi->NumFATs = fbs->BPB_NumFATs; fsbi->fsinfo_sector_addr_infat = fbs->BPB_FSInfo; fsbi->bootsector_bak_sector_addr_infat = fbs->BPB_BkBootSec; printk_color(ORANGE, BLACK, "FAT32 Boot Sector\n\tBPB_FSInfo:%#018lx\n\tBPB_BkBootSec:%#018lx\n\tBPB_TotSec32:%#018lx\n", fbs->BPB_FSInfo, fbs->BPB_BkBootSec, fbs->BPB_TotSec32); // fsinfo扇区的信息 memset(&fsbi->fsinfo, 0, sizeof(struct fat32_FSInfo_t)); blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_READ_DMA_EXT, blk->bd_start_LBA + fsbi->fsinfo_sector_addr_infat, 1, (uint64_t)&fsbi->fsinfo); printk_color(BLUE, BLACK, "FAT32 FSInfo\n\tFSI_LeadSig:%#018lx\n\tFSI_StrucSig:%#018lx\n\tFSI_Free_Count:%#018lx\n", fsbi->fsinfo.FSI_LeadSig, fsbi->fsinfo.FSI_StrucSig, fsbi->fsinfo.FSI_Free_Count); // 初始化超级块的dir entry sb_ptr->root = vfs_alloc_dentry(2); sb_ptr->root->parent = sb_ptr->root; sb_ptr->root->dir_ops = &fat32_dEntry_ops; // 分配2个字节的name sb_ptr->root->name[0] = '/'; sb_ptr->root->name_length = 1; // 为root目录项分配index node sb_ptr->root->dir_inode = vfs_alloc_inode(); sb_ptr->root->dir_inode->inode_ops = &fat32_inode_ops; sb_ptr->root->dir_inode->file_ops = &fat32_file_ops; sb_ptr->root->dir_inode->file_size = 0; // 计算文件占用的扇区数, 由于最小存储单位是簇,因此需要按照簇的大小来对齐扇区 sb_ptr->root->dir_inode->blocks = (sb_ptr->root->dir_inode->file_size + fsbi->bytes_per_clus - 1) / fsbi->bytes_per_sec; sb_ptr->root->dir_inode->attribute = VFS_IF_DIR; sb_ptr->root->dir_inode->sb = sb_ptr; // 反向绑定对应的超级块 // 初始化inode信息 sb_ptr->root->dir_inode->private_inode_info = kmalloc(sizeof(struct fat32_inode_info_t), 0); memset(sb_ptr->root->dir_inode->private_inode_info, 0, sizeof(struct fat32_inode_info_t)); struct fat32_inode_info_t *finode = (struct fat32_inode_info_t *)sb_ptr->root->dir_inode->private_inode_info; finode->first_clus = fbs->BPB_RootClus; finode->dEntry_location_clus = 0; finode->dEntry_location_clus_offset = 0; finode->create_time = 0; finode->create_date = 0; finode->write_date = 0; finode->write_time; return sb_ptr; } /** * @brief todo: 写入superblock * * @param sb */ void fat32_write_superblock(struct vfs_superblock_t *sb) { } /** * @brief 释放superblock的内存空间 * * @param sb 要被释放的superblock */ void fat32_put_superblock(struct vfs_superblock_t *sb) { kfree(sb->private_sb_info); kfree(sb->root->dir_inode->private_inode_info); kfree(sb->root->dir_inode); kfree(sb->root); kfree(sb); } /** * @brief 写入inode到硬盘上 * * @param inode */ void fat32_write_inode(struct vfs_index_node_t *inode) { fat32_inode_info_t *finode = inode->private_inode_info; if (finode->dEntry_location_clus == 0) { kerror("FAT32 error: Attempt to write the root inode"); return; } fat32_sb_info_t *fsbi = (fat32_sb_info_t *)inode->sb->private_sb_info; // 计算目标inode对应数据区的LBA地址 uint64_t fLBA = fsbi->first_data_sector + (finode->dEntry_location_clus - 2) * fsbi->sec_per_clus; struct fat32_Directory_t *buf = (struct fat32_Directory_t *)kmalloc(fsbi->bytes_per_clus, 0); memset(buf, 0, fsbi->bytes_per_clus); inode->sb->blk_device->bd_disk->fops->transfer(inode->sb->blk_device->bd_disk, AHCI_CMD_READ_DMA_EXT, fLBA, fsbi->sec_per_clus, (uint64_t)buf); // 计算目标dEntry所在的位置 struct fat32_Directory_t *fdEntry = buf + finode->dEntry_location_clus_offset; // 写入fat32文件系统的dir_entry fdEntry->DIR_FileSize = inode->file_size; fdEntry->DIR_FstClusLO = finode->first_clus & 0xffff; fdEntry->DIR_FstClusHI = (finode->first_clus >> 16) | (fdEntry->DIR_FstClusHI & 0xf000); // 将dir entry写回磁盘 inode->sb->blk_device->bd_disk->fops->transfer(inode->sb->blk_device->bd_disk, AHCI_CMD_WRITE_DMA_EXT, fLBA, fsbi->sec_per_clus, (uint64_t)buf); kfree(buf); } struct vfs_super_block_operations_t fat32_sb_ops = { .write_superblock = fat32_write_superblock, .put_superblock = fat32_put_superblock, .write_inode = fat32_write_inode, }; // todo: compare long fat32_compare(struct vfs_dir_entry_t *parent_dEntry, char *source_filename, char *dest_filename) { return 0; } // todo: hash long fat32_hash(struct vfs_dir_entry_t *dEntry, char *filename) { return 0; } // todo: release long fat32_release(struct vfs_dir_entry_t *dEntry) { return 0; } // todo: iput long fat32_iput(struct vfs_dir_entry_t *dEntry, struct vfs_index_node_t *inode) { return 0; } /** * @brief fat32文件系统对于dEntry的操作 * */ struct vfs_dir_entry_operations_t fat32_dEntry_ops = { .compare = fat32_compare, .hash = fat32_hash, .release = fat32_release, .iput = fat32_iput, }; // todo: open long fat32_open(struct vfs_index_node_t *inode, struct vfs_file_t *file_ptr) { return 0; } // todo: close long fat32_close(struct vfs_index_node_t *inode, struct vfs_file_t *file_ptr) { return 0; } /** * @brief 从fat32文件系统读取数据 * * @param file_ptr 文件描述符 * @param buf 输出缓冲区 * @param count 要读取的字节数 * @param position 文件指针位置 * @return long 执行成功:传输的字节数量 执行失败:错误码(小于0) */ long fat32_read(struct vfs_file_t *file_ptr, char *buf, int64_t count, long *position) { struct fat32_inode_info_t *finode = (struct fat32_inode_info_t *)(file_ptr->dEntry->dir_inode->private_inode_info); fat32_sb_info_t *fsbi = (fat32_sb_info_t *)(file_ptr->dEntry->dir_inode->sb->private_sb_info); struct block_device *blk = file_ptr->dEntry->dir_inode->sb->blk_device; // First cluster num of the file uint64_t cluster = finode->first_clus; // kdebug("fsbi->bytes_per_clus=%d fsbi->sec_per_clus=%d finode->first_clus=%d cluster=%d", fsbi->bytes_per_clus, // fsbi->sec_per_clus, finode->first_clus, cluster); // kdebug("fsbi->bytes_per_clus=%d", fsbi->bytes_per_clus); // clus offset in file uint64_t clus_offset_in_file = (*position) / fsbi->bytes_per_clus; // bytes offset in clus uint64_t bytes_offset = (*position) % fsbi->bytes_per_clus; if (!cluster) return -EFAULT; // find the actual cluster on disk of the specified position for (int i = 0; i < clus_offset_in_file; ++i) cluster = fat32_read_FAT_entry(blk, fsbi, cluster); // 如果需要读取的数据边界大于文件大小 if (*position + count > file_ptr->dEntry->dir_inode->file_size) count = file_ptr->dEntry->dir_inode->file_size - *position; // 剩余还需要传输的字节数量 int64_t bytes_remain = count; // alloc buffer memory space for ahci transfer void *tmp_buffer = kmalloc(fsbi->bytes_per_clus, 0); int64_t retval = 0; do { memset(tmp_buffer, 0, fsbi->bytes_per_clus); uint64_t sector = fsbi->first_data_sector + (cluster - 2) * fsbi->sec_per_clus; // 读取一个簇的数据 int errno = blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_READ_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)tmp_buffer); if (errno != AHCI_SUCCESS) { kerror("FAT32 FS(read) error!"); retval = -EIO; break; } int64_t step_trans_len = 0; // 当前循环传输的字节数 if (bytes_remain > (fsbi->bytes_per_clus - bytes_offset)) step_trans_len = (fsbi->bytes_per_clus - bytes_offset); else step_trans_len = bytes_remain; if (((uint64_t)buf) < USER_MAX_LINEAR_ADDR) copy_to_user(buf, tmp_buffer + bytes_offset, step_trans_len); else memcpy(buf, tmp_buffer + bytes_offset, step_trans_len); bytes_remain -= step_trans_len; buf += step_trans_len; bytes_offset -= bytes_offset; *position += step_trans_len; // 更新文件指针 cluster = fat32_read_FAT_entry(blk, fsbi, cluster); } while (bytes_remain && (cluster < 0x0ffffff8) && cluster != 0); kfree(tmp_buffer); if (!bytes_remain) retval = count; return retval; } /** * @brief 向fat32文件系统写入数据 * * @param file_ptr 文件描述符 * @param buf 输入写入的字节数 * @param position 文件指针位置 * @return long 执行成功:传输的字节数量 执行失败:错误码(小于0) */ long fat32_write(struct vfs_file_t *file_ptr, char *buf, int64_t count, long *position) { struct fat32_inode_info_t *finode = (struct fat32_inode_info_t *)file_ptr->dEntry->dir_inode->private_inode_info; fat32_sb_info_t *fsbi = (fat32_sb_info_t *)(file_ptr->dEntry->dir_inode->sb->private_sb_info); struct block_device *blk = file_ptr->dEntry->dir_inode->sb->blk_device; // First cluster num of the file uint32_t cluster = finode->first_clus; int64_t flags = 0; // clus offset in file uint64_t clus_offset_in_file = (*position) / fsbi->bytes_per_clus; // bytes offset in clus uint64_t bytes_offset = (*position) % fsbi->bytes_per_clus; if (!cluster) // 起始簇号为0,说明是空文件 { // 分配空闲簇 if (fat32_alloc_clusters(file_ptr->dEntry->dir_inode, &cluster, 1) != 0) return -ENOSPC; } else { // 跳转到position所在的簇 for (uint64_t i = 0; i < clus_offset_in_file; ++i) cluster = fat32_read_FAT_entry(blk, fsbi, cluster); } // kdebug("cluster(start)=%d", cluster); // 没有可用的磁盘空间 if (!cluster) return -ENOSPC; int64_t bytes_remain = count; if (count < 0) // 要写入的字节数小于0 return -EINVAL; uint64_t sector; int64_t retval = 0; void *tmp_buffer = kmalloc(fsbi->bytes_per_clus, 0); do { memset(tmp_buffer, 0, fsbi->bytes_per_clus); sector = fsbi->first_data_sector + (cluster - 2) * fsbi->sec_per_clus; // 计算对应的扇区 if (!flags) // 当前簇已分配 { // kdebug("read existed sec=%ld", sector); // 读取一个簇的数据 int errno = blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_READ_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)tmp_buffer); if (errno != 0) { // kerror("FAT32 FS(write) read disk error!"); retval = -EIO; break; } } int64_t step_trans_len = 0; // 当前循环传输的字节数 if (bytes_remain > (fsbi->bytes_per_clus - bytes_offset)) step_trans_len = (fsbi->bytes_per_clus - bytes_offset); else step_trans_len = bytes_remain; // kdebug("step_trans_len=%d, bytes_offset=%d", step_trans_len, bytes_offset); if (((uint64_t)buf) < USER_MAX_LINEAR_ADDR) copy_from_user(tmp_buffer + bytes_offset, buf, step_trans_len); else memcpy(tmp_buffer + bytes_offset, buf, step_trans_len); // 写入数据到对应的簇 int errno = blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_WRITE_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)tmp_buffer); if (errno != AHCI_SUCCESS) { kerror("FAT32 FS(write) write disk error!"); retval = -EIO; break; } bytes_remain -= step_trans_len; buf += step_trans_len; bytes_offset -= bytes_offset; *position += step_trans_len; // 更新文件指针 // kdebug("step_trans_len=%d", step_trans_len); int next_clus = 0; if (bytes_remain) next_clus = fat32_read_FAT_entry(blk, fsbi, cluster); else break; if (next_clus >= 0x0ffffff8) // 已经到达了最后一个簇,需要分配新簇 { if (fat32_alloc_clusters(file_ptr->dEntry->dir_inode, &next_clus, 1) != 0) { // 没有空闲簇 kfree(tmp_buffer); return -ENOSPC; } cluster = next_clus; // 切换当前簇 flags = 1; // 标记当前簇是新分配的簇 } } while (bytes_remain); // 文件大小有增长 if (*position > (file_ptr->dEntry->dir_inode->file_size)) { file_ptr->dEntry->dir_inode->file_size = *position; file_ptr->dEntry->dir_inode->sb->sb_ops->write_inode(file_ptr->dEntry->dir_inode); // kdebug("new file size=%ld", *position); } kfree(tmp_buffer); if (!bytes_remain) retval = count; // kdebug("retval=%lld", retval); return retval; } /** * @brief 调整文件的当前访问位置 * * @param file_ptr vfs文件指针 * @param offset 调整的偏移量 * @param whence 调整方法 * @return long 更新后的指针位置 */ long fat32_lseek(struct vfs_file_t *file_ptr, long offset, long whence) { struct vfs_index_node_t *inode = file_ptr->dEntry->dir_inode; long pos = 0; switch (whence) { case SEEK_SET: // 相对于文件头 pos = offset; break; case SEEK_CUR: // 相对于当前位置 pos = file_ptr->position + offset; break; case SEEK_END: // 相对于文件末尾 pos = file_ptr->dEntry->dir_inode->file_size + offset; break; default: return -EINVAL; break; } if (pos < 0 || pos > file_ptr->dEntry->dir_inode->file_size) return -EOVERFLOW; file_ptr->position = pos; // kdebug("fat32 lseek -> position=%d", file_ptr->position); return pos; } // todo: ioctl long fat32_ioctl(struct vfs_index_node_t *inode, struct vfs_file_t *file_ptr, uint64_t cmd, uint64_t arg) { return 0; } /** * @brief fat32文件系统,关于文件的操作 * */ struct vfs_file_operations_t fat32_file_ops = { .open = fat32_open, .close = fat32_close, .read = fat32_read, .write = fat32_write, .lseek = fat32_lseek, .ioctl = fat32_ioctl, .readdir = fat32_readdir, }; /** * @brief 创建新的文件 * @param parent_inode 父目录的inode结构体 * @param dest_dEntry 新文件的dentry * @param mode 创建模式 */ long fat32_create(struct vfs_index_node_t *parent_inode, struct vfs_dir_entry_t *dest_dEntry, int mode) { // 文件系统超级块信息 fat32_sb_info_t *fsbi = (fat32_sb_info_t *)parent_inode->sb->private_sb_info; // 父目录项的inode的私有信息 struct fat32_inode_info_t *parent_inode_info = (struct fat32_inode_info_t *)parent_inode->private_inode_info; int64_t retval = 0; // ======== 检验名称的合法性 retval = fat32_check_name_available(dest_dEntry->name, dest_dEntry->name_length, 0); if (retval != 0) return retval; if (dest_dEntry->dir_inode != NULL) return -EEXIST; struct vfs_index_node_t *inode = vfs_alloc_inode(); dest_dEntry->dir_inode = inode; dest_dEntry->dir_ops = &fat32_dEntry_ops; struct fat32_inode_info_t *finode = (struct fat32_inode_info_t *)kzalloc(sizeof(struct fat32_inode_info_t), 0); inode->attribute = VFS_IF_FILE; inode->file_ops = &fat32_file_ops; inode->file_size = 0; inode->sb = parent_inode->sb; inode->inode_ops = &fat32_inode_ops; inode->private_inode_info = (void *)finode; inode->blocks = fsbi->sec_per_clus; struct block_device *blk = inode->sb->blk_device; // 计算总共需要多少个目录项 uint32_t cnt_longname = (dest_dEntry->name_length + 25) / 26; // 默认都是创建长目录项来存储 if (cnt_longname == 0) cnt_longname = 1; // 空闲dentry所在的扇区号 uint32_t tmp_dentry_sector = 0; // 空闲dentry所在的缓冲区的基地址 uint64_t tmp_dentry_clus_buf_addr = 0; uint64_t tmp_parent_dentry_clus = 0; // 寻找空闲目录项 struct fat32_Directory_t *empty_fat32_dentry = fat32_find_empty_dentry( parent_inode, cnt_longname + 1, 0, &tmp_dentry_sector, &tmp_parent_dentry_clus, &tmp_dentry_clus_buf_addr); // kdebug("found empty dentry, cnt_longname=%ld", cnt_longname); finode->first_clus = 0; finode->dEntry_location_clus = tmp_parent_dentry_clus; finode->dEntry_location_clus_offset = empty_fat32_dentry - (struct fat32_Directory_t *)tmp_dentry_clus_buf_addr; // ====== 为新的文件分配一个簇 ======= uint32_t new_dir_clus; if (fat32_alloc_clusters(inode, &new_dir_clus, 1) != 0) { retval = -ENOSPC; goto fail; } // kdebug("new dir clus=%ld", new_dir_clus); // kdebug("dest_dEntry->name=%s", dest_dEntry->name); // ====== 填写短目录项 fat32_fill_shortname(dest_dEntry, empty_fat32_dentry, new_dir_clus); // kdebug("dest_dEntry->name=%s",dest_dEntry->name); // 计算校验和 uint8_t short_dentry_ChkSum = fat32_ChkSum(empty_fat32_dentry->DIR_Name); // kdebug("dest_dEntry->name=%s", dest_dEntry->name); // ======== 填写长目录项 fat32_fill_longname(dest_dEntry, (struct fat32_LongDirectory_t *)(empty_fat32_dentry - 1), short_dentry_ChkSum, cnt_longname); // ====== 将目录项写回磁盘 // kdebug("tmp_dentry_sector=%ld", tmp_dentry_sector); blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_WRITE_DMA_EXT, tmp_dentry_sector, fsbi->sec_per_clus, tmp_dentry_clus_buf_addr); // 注意:parent字段需要在调用函数的地方进行设置 // 释放在find empty dentry中动态申请的缓冲区 kfree((void *)tmp_dentry_clus_buf_addr); return 0; fail:; // 释放在find empty dentry中动态申请的缓冲区 kfree((void *)tmp_dentry_clus_buf_addr); dest_dEntry->dir_inode = NULL; dest_dEntry->dir_ops = NULL; kfree(finode); kfree(inode); return retval; } /** * @brief 创建文件夹 * @param inode 父目录的inode * @param dEntry 新的文件夹的dentry * @param mode 创建文件夹的mode * @return long 错误码 */ int64_t fat32_mkdir(struct vfs_index_node_t *parent_inode, struct vfs_dir_entry_t *dEntry, int mode) { int64_t retval = 0; // 文件系统超级块信息 fat32_sb_info_t *fsbi = (fat32_sb_info_t *)parent_inode->sb->private_sb_info; // 父目录项的inode私有信息 struct fat32_inode_info_t *parent_inode_info = (struct fat32_inode_info_t *)parent_inode->private_inode_info; // ======== 检验名称的合法性 retval = fat32_check_name_available(dEntry->name, dEntry->name_length, 0); if (retval != 0) return retval; // ====== 找一块连续的区域放置新的目录项 ===== // 计算总共需要多少个目录项 uint32_t cnt_longname = (dEntry->name_length + 25) / 26; // 默认都是创建长目录项来存储 if (cnt_longname == 0) cnt_longname = 1; // 空闲dentry所在的扇区号 uint32_t tmp_dentry_sector = 0; // 空闲dentry所在的缓冲区的基地址 uint64_t tmp_dentry_clus_buf_addr = 0; uint64_t tmp_parent_dentry_clus = 0; // 寻找空闲目录项 struct fat32_Directory_t *empty_fat32_dentry = fat32_find_empty_dentry( parent_inode, cnt_longname + 1, 0, &tmp_dentry_sector, &tmp_parent_dentry_clus, &tmp_dentry_clus_buf_addr); // ====== 初始化inode ======= struct vfs_index_node_t *inode = vfs_alloc_inode(); inode->attribute = VFS_IF_DIR; inode->blocks = fsbi->sec_per_clus; inode->file_ops = &fat32_file_ops; inode->file_size = 0; inode->inode_ops = &fat32_inode_ops; inode->sb = parent_inode->sb; struct block_device *blk = inode->sb->blk_device; // ===== 初始化inode的文件系统私有信息 ==== inode->private_inode_info = (fat32_inode_info_t *)kmalloc(sizeof(fat32_inode_info_t), 0); memset(inode->private_inode_info, 0, sizeof(fat32_inode_info_t)); fat32_inode_info_t *p = (fat32_inode_info_t *)inode->private_inode_info; p->first_clus = 0; p->dEntry_location_clus = tmp_parent_dentry_clus; p->dEntry_location_clus_offset = empty_fat32_dentry - (struct fat32_Directory_t *)tmp_dentry_clus_buf_addr; // kdebug(" p->dEntry_location_clus_offset=%d", p->dEntry_location_clus_offset); // todo: 填写完全fat32_inode_info的信息 // 初始化dentry信息 dEntry->dir_ops = &fat32_dEntry_ops; dEntry->dir_inode = inode; // ====== 为新的文件夹分配一个簇 ======= uint32_t new_dir_clus; if (fat32_alloc_clusters(inode, &new_dir_clus, 1) != 0) { retval = -ENOSPC; goto fail; } // kdebug("new dir clus=%ld", new_dir_clus); // ====== 填写短目录项 fat32_fill_shortname(dEntry, empty_fat32_dentry, new_dir_clus); // 计算校验和 uint8_t short_dentry_ChkSum = fat32_ChkSum(empty_fat32_dentry->DIR_Name); // ======== 填写长目录项 fat32_fill_longname(dEntry, (struct fat32_LongDirectory_t *)(empty_fat32_dentry - 1), short_dentry_ChkSum, cnt_longname); // ====== 将目录项写回磁盘 // kdebug("tmp_dentry_sector=%ld", tmp_dentry_sector); blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_WRITE_DMA_EXT, tmp_dentry_sector, fsbi->sec_per_clus, tmp_dentry_clus_buf_addr); // ====== 初始化新的文件夹的目录项 ===== { // kdebug("to create dot and dot dot."); void *buf = kmalloc(fsbi->bytes_per_clus, 0); struct fat32_Directory_t *new_dir_dentries = (struct fat32_Directory_t *)buf; memset((void *)new_dir_dentries, 0, fsbi->bytes_per_clus); // 新增 . 目录项 new_dir_dentries->DIR_Attr = ATTR_DIRECTORY; new_dir_dentries->DIR_FileSize = 0; new_dir_dentries->DIR_Name[0] = '.'; for (int i = 1; i < 11; ++i) new_dir_dentries->DIR_Name[i] = 0x20; new_dir_dentries->DIR_FstClusHI = empty_fat32_dentry->DIR_FstClusHI; new_dir_dentries->DIR_FstClusLO = empty_fat32_dentry->DIR_FstClusLO; // 新增 .. 目录项 ++new_dir_dentries; new_dir_dentries->DIR_Attr = ATTR_DIRECTORY; new_dir_dentries->DIR_FileSize = 0; new_dir_dentries->DIR_Name[0] = '.'; new_dir_dentries->DIR_Name[1] = '.'; for (int i = 2; i < 11; ++i) new_dir_dentries->DIR_Name[i] = 0x20; new_dir_dentries->DIR_FstClusHI = (unsigned short)(parent_inode_info->first_clus >> 16) & 0x0fff; new_dir_dentries->DIR_FstClusLO = (unsigned short)(parent_inode_info->first_clus) & 0xffff; // 写入磁盘 uint64_t sector = fsbi->first_data_sector + (new_dir_clus - 2) * fsbi->sec_per_clus; // kdebug("add dot and dot dot: sector=%ld", sector); blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_WRITE_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)buf); } // 注意:parent字段需要在调用函数的地方进行设置 // 注意:需要将当前dentry加入父目录的subdirs_list // 释放在find empty dentry中动态申请的缓冲区 kfree((void *)tmp_dentry_clus_buf_addr); return 0; fail:; // 释放在find empty dentry中动态申请的缓冲区 kfree((void *)tmp_dentry_clus_buf_addr); return retval; } // todo: rmdir int64_t fat32_rmdir(struct vfs_index_node_t *inode, struct vfs_dir_entry_t *dEntry) { return 0; } // todo: rename int64_t fat32_rename(struct vfs_index_node_t *old_inode, struct vfs_dir_entry_t *old_dEntry, struct vfs_index_node_t *new_inode, struct vfs_dir_entry_t *new_dEntry) { return 0; } // todo: getAttr int64_t fat32_getAttr(struct vfs_dir_entry_t *dEntry, uint64_t *attr) { return 0; } // todo: setAttr int64_t fat32_setAttr(struct vfs_dir_entry_t *dEntry, uint64_t *attr) { return 0; } /** * @brief 从fat32中卸载inode * * @param inode 要被卸载的inode * @return int 错误码 */ static int fat32_detach_inode(struct vfs_index_node_t *inode) { // todo: 当引入哈希表管理inode之后,这个函数负责将inode从哈希表中删除 // 参考Linux的fat_detach return 0; } /** * @brief 取消inode和dentry之间的链接关系(删除文件) * * @param inode 要被取消关联关系的目录项的【父目录项】 * @param dentry 要被取消关联关系的子目录项 */ int64_t fat32_unlink(struct vfs_index_node_t *dir, struct vfs_dir_entry_t *dentry) { int retval = 0; struct vfs_superblock_t *sb = dir->sb; struct vfs_index_node_t *inode_to_remove = dentry->dir_inode; fat32_sb_info_t *fsbi = (fat32_sb_info_t *)sb->private_sb_info; struct fat32_slot_info sinfo = {0}; // todo: 对fat32的超级块加锁 retval = vfat_find(dir, dentry->name, &sinfo); if (unlikely(retval != 0)) goto out; // 从fat表删除目录项 retval = fat32_remove_entries(dir, &sinfo); if (unlikely(retval != 0)) goto out; retval = fat32_detach_inode(dentry->dir_inode); if (unlikely(retval != 0)) goto out; out:; if (sinfo.buffer != NULL) kfree(sinfo.buffer); // todo: 对fat32的超级块放锁 return retval; } /** * @brief 读取文件夹(在指定目录中找出有效目录项) * * @param file_ptr 文件结构体指针 * @param dirent 返回的dirent * @param filler 填充dirent的函数 * @return uint64_t dirent的总大小 */ int64_t fat32_readdir(struct vfs_file_t *file_ptr, void *dirent, vfs_filldir_t filler) { struct fat32_inode_info_t *finode = (struct fat32_inode_info_t *)file_ptr->dEntry->dir_inode->private_inode_info; fat32_sb_info_t *fsbi = (fat32_sb_info_t *)file_ptr->dEntry->dir_inode->sb->private_sb_info; struct block_device *blk = file_ptr->dEntry->dir_inode->sb->blk_device; unsigned char *buf = (unsigned char *)kzalloc(fsbi->bytes_per_clus, 0); uint32_t cluster = finode->first_clus; // 当前文件指针所在位置的簇号(文件内偏移量) int clus_num = file_ptr->position / fsbi->bytes_per_clus; // 循环读取fat entry,直到读取到文件当前位置的所在簇号 for (int i = 0; i < clus_num; ++i) { cluster = fat32_read_FAT_entry(blk, fsbi, cluster); if (cluster > 0x0ffffff7) // 文件结尾 { kerror("file position out of range! (cluster not exists)"); return NULL; } } uint64_t dentry_type = 0; // 传递给filler的dentry类型数据 char *dir_name = NULL; int name_len = 0; // ==== 此时已经将文件夹的目录项起始簇的簇号读取到cluster变量中 === while (cluster <= 0x0ffffff7) // cluster在循环末尾更新(如果当前簇已经没有短目录项的话) { // 计算文件夹当前位置所在簇的起始扇区号 uint64_t sector = fsbi->first_data_sector + (cluster - 2) * fsbi->sec_per_clus; // 读取文件夹目录项当前位置起始扇区的数据 if (AHCI_SUCCESS != blk->bd_disk->fops->transfer(blk->bd_disk, AHCI_CMD_READ_DMA_EXT, sector, fsbi->sec_per_clus, (uint64_t)buf)) { // 读取失败 kerror("Failed to read the file's first sector."); kfree(buf); return NULL; } struct fat32_Directory_t *dentry = NULL; struct fat32_LongDirectory_t *long_dentry = NULL; // 找到当前短目录项 dentry = (struct fat32_Directory_t *)(buf + file_ptr->position % fsbi->bytes_per_clus); name_len = 0; // 逐个查找短目录项 for (int i = file_ptr->position % fsbi->bytes_per_clus; i < fsbi->bytes_per_clus; i += 32, file_ptr->position += 32, ++dentry) { // 若是长目录项则跳过 if (dentry->DIR_Attr == ATTR_LONG_NAME) continue; // 跳过无效表项、空闲表项 if (dentry->DIR_Name[0] == 0xe5 || dentry->DIR_Name[0] == 0x00 || dentry->DIR_Name[0] == 0x05) continue; // 找到短目录项 // 该短目录项对应的第一个长目录项 long_dentry = (struct fat32_LongDirectory_t *)(dentry - 1); // 如果长目录项有效,则读取长目录项 if (long_dentry->LDIR_Attr == ATTR_LONG_NAME && long_dentry->LDIR_Ord != 0xe5 && long_dentry->LDIR_Ord != 0x00 && long_dentry->LDIR_Ord != 0x05) { int count_long_dentry = 0; // 统计长目录项的个数 while (long_dentry->LDIR_Attr == ATTR_LONG_NAME && long_dentry->LDIR_Ord != 0xe5 && long_dentry->LDIR_Ord != 0x00 && long_dentry->LDIR_Ord != 0x05) { ++count_long_dentry; if (long_dentry->LDIR_Ord & 0x40) // 最后一个长目录项 break; --long_dentry; } // 为目录名分配空间 dir_name = (char *)kmalloc(count_long_dentry * 26 + 1, 0); memset(dir_name, 0, count_long_dentry * 26 + 1); // 重新将长目录项指针指向第一个长目录项 long_dentry = (struct fat32_LongDirectory_t *)(dentry - 1); name_len = 0; // 逐个存储文件名 for (int j = 0; j < count_long_dentry; ++j, --long_dentry) { // 存储name1 for (int k = 0; k < 5; ++k) { if (long_dentry->LDIR_Name1[k] != 0xffff && long_dentry->LDIR_Name1[k] != 0x0000) dir_name[name_len++] = (char)long_dentry->LDIR_Name1[k]; } // 存储name2 for (int k = 0; k < 6; ++k) { if (long_dentry->LDIR_Name2[k] != 0xffff && long_dentry->LDIR_Name2[k] != 0x0000) dir_name[name_len++] = (char)long_dentry->LDIR_Name2[k]; } // 存储name3 for (int k = 0; k < 2; ++k) { if (long_dentry->LDIR_Name3[k] != 0xffff && long_dentry->LDIR_Name3[k] != 0x0000) dir_name[name_len++] = (char)long_dentry->LDIR_Name3[k]; } } // 读取目录项成功,返回 dentry_type = dentry->DIR_Attr; goto find_dir_success; } else // 不存在长目录项 { dir_name = (char *)kmalloc(15, 0); memset(dir_name, 0, 15); name_len = 0; int total_len = 0; // 读取基础名 for (int j = 0; j < 8; ++j, ++total_len) { if (dentry->DIR_Name[j] == ' ') break; if (dentry->DIR_NTRes & LOWERCASE_BASE) // 如果标记了文件名小写,则转换为小写字符 dir_name[name_len++] = dentry->DIR_Name[j] + 32; else dir_name[name_len++] = dentry->DIR_Name[j]; } // 如果当前短目录项为文件夹,则直接返回,不需要读取扩展名 if (dentry->DIR_Attr & ATTR_DIRECTORY) { dentry_type = dentry->DIR_Attr; goto find_dir_success; } // 是文件,增加 . dir_name[name_len++] = '.'; // 读取扩展名 // 读取基础名 for (int j = 0; j < 3; ++j, ++total_len) { if (dentry->DIR_Name[j] == ' ') break; if (dentry->DIR_NTRes & LOWERCASE_BASE) // 如果标记了文件名小写,则转换为小写字符 dir_name[name_len++] = dentry->DIR_Name[j] + 32; else dir_name[name_len++] = dentry->DIR_Name[j]; } if (total_len == 8) // 没有扩展名 dir_name[--name_len] = '\0'; dentry_type = dentry->DIR_Attr; goto find_dir_success; } } // 当前簇不存在目录项 cluster = fat32_read_FAT_entry(blk, fsbi, cluster); } kfree(buf); // 在上面的循环中读取到目录项结尾了,仍没有找到 return NULL; find_dir_success:; // 将文件夹位置坐标加32(即指向下一个目录项) file_ptr->position += 32; // todo: 计算ino_t if (dentry_type & ATTR_DIRECTORY) dentry_type = VFS_IF_DIR; else dentry_type = VFS_IF_FILE; return filler(dirent, 0, dir_name, name_len, dentry_type, 0); } struct vfs_inode_operations_t fat32_inode_ops = { .create = fat32_create, .mkdir = fat32_mkdir, .rmdir = fat32_rmdir, .lookup = fat32_lookup, .rename = fat32_rename, .getAttr = fat32_getAttr, .setAttr = fat32_setAttr, .unlink = fat32_unlink, }; /** * @brief 给定字符串长度,计算去除字符串尾部的'.'后,剩余部分的长度 * * @param len 字符串长度(不包括\0) * @param name 名称字符串 * @return unsigned int 去除'.'后的 */ static unsigned int vfat_striptail_len(unsigned int len, const char *name) { while (len && name[len - 1] == '.') --len; return len; } /** * @brief 在指定inode的长目录项中搜索目标子目录项 * * @param dir 父目录项inode * @param name 要查找的子目录项的名称 * @param len 子目录项名称长度 * @param slot_info 返回的对应的子目录项的短目录项。 * @return int 错误码 */ static int fat_search_long(struct vfs_index_node_t *dir, const char *name, int len, struct fat32_slot_info *slot_info) { int retval = 0; retval = __fat32_search_long_short(dir, name, len, slot_info); return retval; } /** * @brief 在fat32中,根据父inode,寻找给定名称的子inode * * @param dir 父目录项的inode * @param name 子目录项名称 * @param slot_info 找到的slot的信息 * @return int 错误码 */ static int vfat_find(struct vfs_index_node_t *dir, const char *name, struct fat32_slot_info *slot_info) { uint32_t len = vfat_striptail_len(strnlen(name, PAGE_4K_SIZE - 1), name); if (len == 0) return -ENOENT; return fat_search_long(dir, name, len, slot_info); } struct vfs_filesystem_type_t fat32_fs_type = { .name = "FAT32", .fs_flags = 0, .read_superblock = fat32_read_superblock, .next = NULL, }; void fat32_init() { kinfo("Initializing FAT32..."); // 在VFS中注册fat32文件系统 vfs_register_filesystem(&fat32_fs_type); // 挂载根文件系统 fat32_register_partition(ahci_gendisk0.partition + 0, 0); kinfo("FAT32 initialized."); }