Lines Matching refs:Step
6160 # Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5. #
6162 # Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. #
6168 # Step 3. Approximate arctan(u) by a polynomial poly. #
6170 # Step 4. Return arctan(F) + poly, arctan(F) is fetched from a #
6173 # Step 5. If |X| >= 16, go to Step 7. #
6175 # Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. #
6177 # Step 7. Define X' = -1/X. Approximate arctan(X') by an odd #
6978 # Step 1. Set ans := 0 #
6980 # Step 2. Return ans := X + ans. Exit. #
6987 # Step 1. Check |X| #
6988 # 1.1 If |X| >= 1/4, go to Step 1.3. #
6989 # 1.2 Go to Step 7. #
6990 # 1.3 If |X| < 70 log(2), go to Step 2. #
6991 # 1.4 Go to Step 10. #
6996 # the comparisons, see the notes on Step 1 of setox. #
6998 # Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). #
7007 # Notes: See the notes on Step 2 of setox. #
7009 # Step 3. Calculate X - N*log2/64. #
7014 # Notes: Applying the analysis of Step 3 of setox in this case #
7018 # Step 4. Approximate exp(R)-1 by a polynomial #
7033 # Step 5. Compute 2^(J/64)*p by #
7042 # be exploited in Step 6 below. The total relative error #
7046 # Step 6. Reconstruction of exp(X)-1 #
7048 # 6.1 If M <= 63, go to Step 6.3. #
7058 # Step 7. exp(X)-1 for |X| < 1/4. #
7059 # 7.1 If |X| >= 2^(-65), go to Step 9. #
7060 # 7.2 Go to Step 8. #
7062 # Step 8. Calculate exp(X)-1, |X| < 2^(-65). #
7076 # Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial #
7095 # Step 10. Calculate exp(X)-1 for |X| >= 70 log 2. #
7097 # practical purposes. Therefore, go to Step 1 of setox. #
8120 # Note 2. In Step 2 of lognp1, in order to preserved accuracy, #