Lines Matching refs:log2

6733 #	Step 2.	Calculate N = round-to-nearest-int( X * 64/log2 ).	#
6736 # 2.2 N := round-to-nearest-integer( X * 64/log2 ). #
6753 # Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24). #
6757 # Step 3. Calculate X - N*log2/64. #
6759 # where L1 := single-precision(-log2/64). #
6761 # L2 := extended-precision(-log2/64 - L1).#
6763 # approximate the value -log2/64 to 88 bits of accuracy. #
6772 # N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24) #
6773 # X*64/log2 (1+eps) = N + f, |f| <= 0.5 #
6774 # X*64/log2 - N = f - eps*X 64/log2 #
6775 # X - N*log2/64 = f*log2/64 - eps*X #
6778 # Now |X| <= 16446 log2, thus #
6780 # |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64 #
6781 # <= 0.57 log2/64. #
6792 # Note that 0.0062 is slightly bigger than 0.57 log2/64. #
6821 # X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380. #
6845 # 8.1 If |X| > 16480 log2, go to Step 9. #
6847 # 8.2 N := round-to-integer( X * 64/log2 ) #
6857 # Step 9. Handle exp(X), |X| > 16480 log2. #
7114 cmp.l %d1,&0x400CB167 # 16380 log2 trunc. 16 bits
7120 #--This is the normal branch: 2^(-65) <= |X| < 16380 log2.
7124 fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X
7127 fmov.l %fp0,%d1 # N = int( X * 64/log2 )
7145 fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64)
7146 fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64
7215 cmp.l %d1,&0x400CB27C # 16480 log2
7221 fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X
7224 fmov.l %fp0,%d1 # N = int( X * 64/log2 )
7285 #--This is the case: 1/4 <= |X| <= 70 log2.
7289 fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X
7291 fmov.l %fp0,%d1 # N = int( X * 64/log2 )
7307 fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64)
7308 fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64
7479 #--Step 10 |X| > 70 log2
7584 # 1. If |X| > 16380 log2, go to 3. #
7586 # 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae #
7591 # 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5. #
7593 # 4. (16380 log2 < |X| <= 16480 log2) #
7603 # 5. (|X| > 16480 log2) sinh(X) must overflow. Return #
7698 # 1. If |X| > 16380 log2, go to 3. #
7700 # 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formula #
7705 # 3. If |X| > 16480 log2, go to 5. #
7707 # 4. (16380 log2 < |X| <= 16480 log2) #
7718 # 5. (|X| > 16480 log2) sinh(X) must overflow. Return #
7816 # 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3. #
7818 # 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by #
7823 # 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1, #
7826 # 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6. #
7828 # 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by #
7833 # 6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we #
9095 cmp.l %d1,&0x400B9B07 # |X| <= 16480*log2/log10 ?