Lines Matching refs:EXP
5552 add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2)
5956 mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI
5957 sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI)
7151 #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
7182 fadd.x %fp2,%fp0 # fp0 is EXP(R) - 1
7186 #--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) )
7252 #--entry point for EXP(X), X is denormalized
7314 #--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
7352 fadd.x %fp2,%fp0 # fp0 IS EXP(R)-1
7624 #--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) )
7632 bsr setox # FP0 IS EXP(|X|)
7634 fmul.s &0x3F000000,%fp0 # (1/2)EXP(|X|)
7638 fdiv.x %fp0,%fp1 # 1/(2 EXP(|X|))
7901 #--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X),
7902 #--TANH(X) = SGN - SGN*2/[EXP(Y)+1].
7917 bsr setox # FP0 IS EXP(Y)
7921 fadd.s &0x3F800000,%fp0 # EXP(Y)+1
7925 fdiv.x %fp0,%fp1 # -SIGN(X)2 / [EXP(Y)+1 ]
8470 #--NEXT SEE IF EXP(-1/16) < X < EXP(1/16)
8477 #--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2)
9151 #-- 2**(M'+M) * 2**(J/64) * EXP(R)
9173 fadd.x %fp2,%fp0 # FP0 IS EXP(R) - 1
9178 #--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1) - (1 OR 0)
9775 cmpi.w %d0, &0x7fff # is (EXP == MAX)?